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We consider the spatially homogeneous Boltzmann equation for Maxwellian
molecules and general finite energy initial data: positive Borel measures with
finite moments up to order 2. We show that the coefficients in the Wild sum
converge strongly to the equilibrium, and quantitatively estimate the rate. We
show that this depends on the initial data F essentially only through on the
behavior near r=0 of the function JF(r)=>|v| > 1/r |v|2 dF(v). These estimates on
the terms in the Wild sum yield a quantitative estimate, in the strongest physical
norm, on the rate at which the solution converges to equilibrium, as well as
a global stability estimate. We show that our upper bounds are qualitatively
sharp by producing examples of solutions for which the convergence is as
slow as permitted by our bounds. These are the first examples of solutions
of the Boltzmann equation that converge to equilibrium more slowly than
exponentially.

KEY WORDS: Boltzmann equation; Maxwellian molecules; Wild sum; global
stability.

1. INTRODUCTION

1.1. The Boltzmann Equation in L1(R 3)

The spatially homogeneous Boltzmann equation describes the time evolu-
tion of the velocity density function ft(v) — f(v, t) for a dilute gas composed



of identical particles. Hence ft should be a non-negative integrable function
on R3, and the equation itself is

“

“t
ft(v)=Q(ft, ft)(v), (v, t) ¥ R3 × [0, .) (1.1)

where and Q is the collision integral operator given by

Q(f, g)(v)=FF
R3 × S2

B(v − vg, s)[f(vŒ) g(v −

g) − f(v) g(vg)] ds dvg.

Here, vŒ and v −

g denote the post-collisional velocites, and they must obey the
conservation of momentum and kinetic energy:

vŒ+v −

g=v+vg, |vŒ|2+|v −

g |2=|v|2+|vg |2.

All such pairs of vectors may be parameterized by (unit) vectors s ¥ S2.
One particularly useful parameterization is

vŒ=
v+vg

2
+

|v − vg |
2

s, v −

g=
v+vg

2
−

|v − vg |
2

s, s ¥ S2. (1.2)

The function B is the collision kernel, which is a non negative Borel func-
tion of |v − vg | and Ov − vg, sP only.

The results in this paper will all be obtained under two conditions on B.
The first is that we consider so-called Maxwellian molecules, meaning that
the kernel B depends only on Ov − vg, sP/|v − vg |:

B(v − vg, s)=B 17 v − vg

|v − vg |
, s82 . (1.3)

Here, O · , ·P denotes the inner product in R3. For background information
on the physical model, see, e.g., refs. 13 and 29. For later convenience,
we define B(t)=0 for |t| > 1. The second is the so-called angular cutoff
condition, which is

F
p

0
B(cos(h)) sin(h) dh < .. (1.4)

These two conditions have the following consequences. Under the
angular cutoff condition (1.4), the collision integral operator Q(f, g) can
be split into its so-called gain and loss terms:

Q(f, g)(v)=Q+(f, g)(v) − Q−(f, g)(v) (1.5)
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where

Q+(f, g)(v)=FF
R3 × S2

B(v − vg, s) f(vŒ) g(v −

g) ds dvg,

Q−(f, g)(v)=f(v) F
R3
5F

S2
B(v − vg, s) ds6 g(vg) dvg.

Without the cutoff condition, cancellations in Q(f, g) are crucial, and
solutions to (1.1) have only been shown to exist and studied in a certain
weak form (refs. 4, 17, 34, 3, and 2). The cutoff condition facilitates the
construction of strong solutions that can be studied in greater detail.

This is particularly true in the case that B satisfies the Mawellian
molecule condition. Then there is a constructive method, due to Wild, (33) of
solving (1.1) for any non-negative initial datum f0=F ¥ L1(R3). Wild’s
method gives the (unique) solution in the form

ft= C
.

n=1
e−at(1 − e−at)n − 1 Q+

n (F)

where a=2p >p
0 B(cos(h)) sin(h) dh ||F||L1 and the Q+

n (F) are certain
recursively defined integral expressions in F. We describe these below in
great detail, but before that, we wish to focus attention on the following
point: Wild’s formula allows one to rephrase questions about the evolution
t W ft as questions about the development of the sequence n W Q+

n (F). As
we shall see below, they are often much more amenable in this form. This is
particularly true of questions concerning the trend to equilibrium.

As is well known, the only equilibrium (or steady-state) solutions of
(1.1) in L1 are the Maxwellians. This is the family of non-negative integral
functions on R3 paramterized by r ¥ R+, u ¥ R3 and T ¥ R+ by

Mr, u, T(v)=r(2pT)−3/2 e−|v − u|2/2T.

Given a non-negative function F ¥ L1
2(R3), define MF to be the Maxwellian

with parameters (r, u, T) where

F
R3

(1, v, |v|2) F(v) dv=(r, ru, 3rT).

For instance under the moment condition >R3 (1, v, |v|2) F(v) dv=(1, 0, 3)
the corresponding Maxwellian MF is

MF(v)=M(v) :=1 1
2p
23/2

e−|v|2/2.
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It is also convenient to establish the notations

rF=F
R3

F(v) dv, uF=
1

rF
F

R3
vF(v) dv and

TF=
1

3rF
F

R3
|v − uF |2 F(v) dv. (1.6)

We shall show here that in broadest physical generality,

lim
n Q .

Q+
n (F)=MF

in the strongest physical norms, and shall obtain precise rate information on
the convergence. This in turn shall provide us with precise information con-
cerning how the rate at which ft approaches MF depends on F and B.

We now turn to some technical matters and notational conventions
required for a clear statement of our main results.

Define L1
s (R3) to be the weighted L1 space:

L1
s (R3)=3f | ||f||L1

s
:=F

R3
(1+|v|2) s/2 |f(v)| dv < .4 , s \ 0

where f are real or complex valued measurable function on R3.
It is well known that for any initial datum 0 [ F ¥ L1

2(R3), the solution
to (1.1) with (1.3)–(1.4) in the class C1([0, .); L1

2(R3)) exists uniquely and
conserves the mass, momentum (or mean velocity) and energy. In fact, even
without the cutoff assumption, global existence, uniqueness, and the con-
servation laws have been proven in Toscani and Villani (27) for all initial
data having finite mass and finite energy.

Because of the integrability in (1.4), we can assume (after rescaling the
time variable) that the total integral of the kernel B on S2 is one:

F
S2

B(Oz, sP) ds=2p F
p

0
B(cos(h)) sin(h) dh=2p ||B||L1[ − 1, 1]=1, z ¥ S2.

(1.7)

Under this condition, for f and g non-negative integrable functions,

F
R3

Q+(f, g) dv=||f||L1 ||g||L1.

Hence, if f and g are both probability densities, so is Q+(f, g). As a
consequence of (1.2), changing s to − s does not change the product
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f(vŒ) f(v −

g). So it is usual to assume that the angular function B( · ) is even:
B(−t)=B(t), t ¥ [ − 1, 1]. This then implies that

Q+(f, g)(v)=Q+(g, f )(v).

Following Wild, we now define the Wild convolution f p g of two
integrable functions f and g on R3 by

f p g=Q+(f, g).

By what has been said above, under the condition that B is even, the Wild
convolution is commutative. However, it is not associative under any
natural condition on B. Throughout this paper, unless otherwise stated, we
always assume that the kernel B( · ) is a nonnegative even function in L1(R)
with supp B … [ − 1, 1] and satisfies the normalization (1.7).

Using this notation, and under our assumptions, we can rewrite (1.1)
in the form

“

“t
ft(v)=(ft p ft)(v) − rF ft(v), ft |t=0=F. (1.8)

This may be solved by iteration in a standard way, producing a solution in
the form of a so-called Wild sum (33) (for instance for rF=1):

ft= C
.

n=1
e−t(1 − e−t)n − 1 Q+

n (F) (1.9)

where

Q+
1 (F)=F

and

Q+
n (F)=

1
n − 1

C
n − 1

k=1
Q+

k (F) p Q+
n − k(F), n \ 2. (1.10)

One can check this by showing that the right hand side of (1.9) is also an
energy conserving solution of the Boltzmann equation with the same initial
datum F, and since such solutions are unique, it is the solution.

It is known that for all non-negative F ¥ L1
2(R3), the solution of (1.8)

satsifies

lim
t Q .

ft=MF. (1.11)
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McKean observed an analogy between this convergence and the con-
vergence to a Gaussian distribution in the central limit theorem. (22) He
proposed that there should be a central limit theorem for Maxwellian
molecules asserting that (for rF=1)

lim
n Q .

Q+
n (F)=MF. (1.12)

Under certain smoothness and moment assumptions on F, this was done in
ref. 12, and quantitative bounds were obtained on the rate of convergence
in (1.12). Here we take up the question of the rate of convergence in (1.12)
in full generality, making no smoothness assumptions on F, and requiring
no moment conditions other than finite energy. In fact, not only do we
make no smoothness hypothesis on F, we do not even require F to be a
function. Our arguments all work assuming only that F is a positive Borel
measure with finite second moments. After explaining what it means to
solve the Boltzmann equation in this setting, we shall finally state our
results.

1.2. Distributional Solutions

In view of statistical physics, initial data to the Boltzmann equation
are best chosen from the largest class, say the positive, finite Borel mea-
sures on R3. For the Maxwellian model under consideration, the corre-
sponding solutions, called distributional solutions, give no more essential
difficulty than the L1-solutions in dealing with existence, uniqueness, con-
vergence to equilibrium, stability, etc. Let us introduce some classes of
measures.

B0(R3) :=finite Borel measures on R3

Bs(R3) :=3m ¥ B0(R3) : F
R3

(1+|v|2) s/2 d |m| (v) < .4 , s \ 0

P2(R3) :=3F ¥ B2(R3) : F \ 0, F
R3

dF(v)=14 ,

P2(R3; v0, T) :=3F ¥ P2(R3) : F
R3

v dF(v)=v0, 1
3 F

R3
|v − v0 |2 dF(v)=T4 .

Let m ¥ Bs(R3), s \ 0. Then m defines a bounded linear functional on
Cb(R3) :=C(R3) 5 L.(R3) through

Om, fPs :=F
R3

f(v)(1+|v|2) s/2 dm(v) -f ¥ Cb(R3). (1.13)
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The corresponding norm || · ||Bs
is given by

||m||Bs
=sup{|Om, fPs | | f ¥ Cb(R3), ||f||L. [ 1}=F

R3
(1+|v|2) s/2 d |m| (v).

(1.14)

For s=0, ||m||B0
is the total variation of the measure m. Let C.

c denote the
class of C.-functions with compact supports. It is easily seen that

||m||Bs
=sup{|Om, fPs | | f ¥ C.

c (R3), ||f||L. [ 1}. (1.15)

Of course if the measure m is also absolutely continuous with respect to
the Lebesgue measure dv, i.e., dm(v)=g(v) dv for some g ¥ L1

s (R3), then
||m||Bs

=||g||L1
s
.

The following relation (see, e.g., Chapter 1 of ref. 35) is a fundamental
property of (1.2): For any f, g ¥ L1(R3), f ¥ L.(R3) and q ¥ L.[0, .),

F
R3

f(v) 5FF
R3 × S2

B 17 v − vg

|v − vg |
, s82 q(|v − vg |) f(vŒ) g(v −

g) ds dvg
6 dv

=FF
R3 × R3

5F
S2

B 17 v − vg

|v − vg |
, s82 f(vŒ) ds6 q(|v − vg |) f(v) g(vg) dv dvg.

(1.16)

Since a measure may have a singular part, a convention should be made for
the collision integral: For any locally bounded Borel function f on R3, we
define

LB[f](v, vg) :=F
S2

B 17 v − vg

|v − vg |
, s82 f(vŒ) ds=f(v) for v=vg.

Under this convention, if f is continuous on R3, then LB[f] is continuous
on R3 × R3. (To prove this one can assume first that B( · ) is smooth, then
use standard L1-approximation).

Now take F, G ¥ Bs(R3). Let q(r) be a bounded Borel function on
[0, .). Let Q+

q ( · , · ) be a collision operator with the kernel B(Oz/|z|, sP)
q(|z|), z=v − vg. Then, using (1.16), the collision integral Q+

q (F, G) is
defined to be the Borel measure specified through the Riesz representation
theorem by

F
R3

f(v) dQ+
q (F, G)(v)=FF

R3 × R3
(LB[f](v, vg) q(|v − vg |)) dF(v) dG(vg)

(1.17)
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for all Borel function f satisfying supv ¥ R3 |f(v)| (1+|v|2)−s/2 < .. For q=1,
we simply write Q+(F, G) in place of Q+

q (F, G). As in L1, we denote

F p G :=Q+(F, G)

and F p G is again called the Wild convolution of F, G ¥ Bs(R3), and when
F and G both belong to P2(R3; v0, T), so does F p G. Under our assump-
tions on B, it is still commutative, and is still not associative.

Among the other useful properties of the Wild convolution is the
following continuity property: if F1, F2, G1, G2 ¥ Bs(R3), s \ 0, then

||F1 p G1 − F2 p G2 ||Bs
[ ||F1 − F2 ||Bs

||G1 ||Bs
+||F2 ||Bs

||G1 − G2 ||Bs
.

When considering distributional solutions to the Boltzmann equation,
it is usual to write it in weak form; i.e., to require that t W ft be continuous
into B2(R3, || · ||B2

), that f0=F, and that

d
dt

Oft, fP2=Oft p ft, fP2 − ||F||B0
Oft, fP2 -f ¥ Cb(R3), t \ 0.

As in the case of L1-solutions, the existence, uniqueness and the
conservation laws; i.e.,

F
R3

(1, v, |v|2) dft(v)=F
R3

(1, v, |v|2) dF(v), t \ 0 (1.18)

have been proven to hold for distributional solutions of Eq. (1.1) for
Maxwellian model (27) for all initial data in B2(R3).

Interpreting integrals of continuous measure valued functions in the
Bochner sense, this can be recast as the equivalent integral equation

ft=F+F
t

0
(fy p fy) dy − ||F||B0

F
t

0
fy dy, t \ 0. (1.19)

with initial data 0 [ F ¥ B2(R3). Here, it is natural to require that the
solution 0 [ ft ¥ C([0, .); B2(R3, || · ||B2

)) and this then implies that ft ¥

C1([0, .); B2(R3, || · ||B2
)). The Wild expansion (1.9)–(1.10) also holds for

distribution solutions with ||F||B0
=1.

Equilibria in the distributional setting are solutions of the following
equation:

F p F=||F||B0
F, 0 [ F ¥ B2(R3), ||F||B0

] 0.
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In addition to the Maxwellian densities, there is a new class of equilibria:
The Dirac measures. Clearly, these are limits of the Maxwellian equilibria,
and it is easily checked that Maxwellian distributions and Dirac measures
are the only equilibria. (This will also be an easy consequence of the results
proved below).

As one final convention, throughout this paper, our notation does not
distinguish between Maxwellian function M(v) and Maxwellian distribu-
tion M(v) dv, and we extend the definitions (1.6) for rF, uF and TF, as well
as MF, to distributions in the obvious way.

1.3. Main Results

Our main results concern rates of convergence in limn Q . Q+
n (F)=MF

and limt Q . ft=MF where ft is the solution of (1.19) with f0=F ¥

B2(R3). These rates both depend on the initial datum F, and on the colli-
sion kernel B. We obtain bounds on these rates that depend on the initial
datum F only through the rate at which limr Q 0 JF(r)=0 where

JF(r)=F
|v| > 1/r

|v|2 dF(v), r > 0; JF(0)=0, (1.20)

and only on B through the rate at which limr Q 0 WB(r)=0 where

WB(r)=sup
|h| [ r

||B( · +h) − B||L1(R), r \ 0. (1.21)

Notice that for all F ¥ B2(R3), JF(r) is well defined for all r > 0, and it
is always the case, by the dominated convergence theorem, that limr Q 0 JF(r)
=0. However, the rate at which this convergence takes place can be arbi-
trarily slow in the class B2(R3). A slow rate of convergence in limr Q 0 JF(r)
=0 means that a large part of the energy distribution is concentrated in a
small part of the mass distribution, out at high energies. Speaking more
loosely, the relaxation to equilibrium is slow when a significant fraction of
the energy is concentrated in a small fraction of the molecules.

Also note that only under the assumption that B is integrable, it will
be the case that limr Q 0 WB(r)=0. However, once again, the rate may be
arbitrarily slow. It is convenient to define

Wg
B(r)=WB(r) |log WB(r)|. (1.22)
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We may now state our main result:

Theorem 1. Let F ¥ P2(R3; v0, T) with T > 0, and let MF ¥

P2(R3; v0, T) be the corresponding Maxwellian distribution. Then

||Q+
n (F) − MF ||B2

[ FB, F(n−a), n=1, 2, 3,... (1.23)

where

FB, F(r)=CB, FWg
B((r+JF(r))1/60), r \ 0

CB, F=CB(1+|v0 |)3 (1+T)2 1F
R3

|v − v0 | dF(v)2
−1/30

,

a=60b/(120+b), the constants 0 < b < 1 and 0 < CB < . depend only on
the kernel B( · ).

As a consequence of this we shall deduce:

Theorem 2. Let F ¥ P2(R3; v0, T) with T > 0, and let ft be the
distributional solution of the Boltzmann equation (1.19) in C([0, .);
B2(R3, || · ||B2

) with the initial datum ft |t=0=F. Let MF be the corresponding
Maxwellian distribution in P2(R3; v0, T). Then

||ft − MF ||B2
[ FB, F(e−bt), t \ 0 (1.24)

with b=30b/(60+b), where the constant b > 0 and the function FB, F(r)
are given in Theorem 1 with the only difference that the constant CB for
defining FB, F(r) is now replaced by 120+CB.

Corollary to Theorem 2. Under the conditions in Theorem 2,
suppose further that for some d > 0 the initial datum F satisfy

F
R3

|v|2+d dF(v) < .

and the collision kernel B( · ) satisfy the Hölder condition in L1-norm: For
some constants 0 < CB < ., 0 < a=aB [ 1

||B( · +h) − B||L1(R) [ CB |h|a, h ¥ R. (1.25)

Then

||ft − MF ||B2
[ Ce−bt, t \ 0
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where the constant b > 0 depends only on d and B( · ), and the constant
C < . depends only on B( · ) and F.

As an application of these explicit bounds on the convergence rate, we
obtain the following estimate of global stability around any given solution
whose initial datum is not a Dirac measure. (We explain the restriction in
Section 6).

Theorem 3. If 0 [ F ¥ B2(R3) is not a Dirac measure and ||F||B0
] 0,

then for any 0 [ G ¥ B2(R3)

sup
t \ 0

||ft − gt ||B2
[ YB, F(||F − G||B2

) (1.26)

where ft, gt are solutions of the Boltzmann equation (1.19) in C([0, .);
B2(R3, || · ||B2

) with ft |t=0=F, gt |t=0=G, and

YB, F(r)=CB, F{r+Wg
B((ra+JF(ra))1/60)}, r \ 0

a=
b

10
||F||B2

||F||B0
+ b

60

> 0, CB, F=CBCF,

CF=C 1 |uF |, TF, ||F||B0
, F

R3
|v − uF | dF(v)2 < .,

and uF is the mean velocity, TF is the temperature, and the constants
b > 0, CB < . depend only on the kernel B( · ); the function (y1, y2, y3, y4) W
C(y1, y2, y3, y4) can be written as an explicit function of (y1, y2, y3, y4)
and is continuous on [0, .) × (0, .)3.

The fact that the stability holds in the || · ||B2
norm, the energy norm,

enables us to prove a bound on the ‘‘tails’’ of the energy distribution that
hold globally in time. First recall (14) that for any s > 2, if >R3 |v| s dF(v) < .,
the solution ft with initial datum F has the property that supt \ 0 >R3 |v| s dft(v)
< C for some finite constant depending only on B and >R3 |v| s dF(v). In the
case of hard potentials, the evolution actually improves matters, producing
moments of all orders at any finite positive time, assuming only that F has
finite energy. (32) This is not true for Maxwellian molecules. For instance, if
>R3 |v|2 log(1+|v|2) dF(v)=., then >R3 |v|2 log(1+|v|2) dft(v)=. for all
t \ 0 because dft(v) \ exp(−rFt) dF(v). Bobylev (7) describes this as an
increase in the ‘‘tail temperature.’’ The next result says that the tails cannot
get too hot:

Fast and Slow Convergence to Equilibrium for Maxwellian Molecules 69



Corollary to Theorem 3. Let F be given in Theorem 3, let ft ¥

C([0, .); B2(R3, || · ||B2
)) be the unique solution of Eq. (1.19) with ft |t=0=F.

Then

sup
t \ 0

F
|v| > R

|v|2 dft(v) [ YB, F(2JF(R−1/2))+2 ||F||B2

1
R

-R > 0

where YB, F(r) is the function given in Theorem 3.

We also obtain lower bounds that reveal the sharpness of the bounds
stated above. We give a construction of initial data through which an arbi-
trarily slow rate of approach to equilibrium can be obtained. In fact, this
shows for the first time that there are solutions for which the rate of conver-
gence in limt Q . ft=MF is worse than exponential.

Bobylev (7) had earlier shown that for an arbitrary l > 0, initial data F
can be constructed with ||ft − MF ||L1 \ Ce−lt. However, until now, there
was no proof that algebraic rates, or worse, could actually hold. Moreover,
the lower bounds obtained here show that the upper bounds obtained in
Theorem 2 are qualitatively best possible, at least when the kernel B( · )
satisfies the Hölder condition (1.25). That is, at least in this case, the lower
bounds and the upper bounds can be scale-equivalent. The meaning of this
term is as follows:

Let F(t), Y(t) be nonnegative functions on [0, .). Define a partial
order Q between F and Y by

F(t) Q Y(t) . F(t) [ C[Y(at)]b
-t ¥ [0, .) for some 0 < a, b, C < ..

We say that F and Y are scale-equivalent on [0, .) in case both F Q Y and
Y Q F hold on [0, .).

Recall that a function A on [0, .) is completely monotone if it is a
positive function in C.(0, .) 5 C[0, .) satisfying

(−1)n dn

dtn A(t) \ 0 -n=0, 1, 2,...; -t > 0; A(0)=1, and lim
t Q .

A(t)=0.

A classical theorem of Bernstein (15) characterizes such functions as the
Laplace transforms of finite positive measures on [0, .). It follows that the
decay rate of a completely monotone function is never faster than e−at for
some constant 0 < a < .. Instead, it can be arbitrarily slow:

A(t)=(1+t)−d, (1+log(1+t))−d, (1+log(1+log(1+t)))−d,... (1.27)
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are all completely monotone. Indeed, Lemma 5.4 of Section 5 states the
following: If A0(t) is any completely monotone function, then so is A1(t)=
A0(log(1+t)).

One more set of definitions is required for a complete statement of our
lower bounds. Let

H s(R3)=3f | (||f||Hs)2 :=F
R3

(1+|t|2) s |f̂(t)|2 dt < .4 , s \ 0

where f ¥ L1(R3) or f ¥ B0(R3),

f̂(t)=F
R3

e−iOv, tPf(v) dv resp. f̂(t)=F
R3

e−iOv, tP df(v)

denote the Fourier transforms of an integrable function f, or, respectively,
bounded measure df. Supposing that H ¥ B2(R3) and that >R3 (1, v) dH(v)
=(0, 0), we can define |||H|||0 by

|||H|||0 := sup
0 ] t ¥ R3

|Ĥ(t)|
|t|2 . (1.28)

This norm defines a weak metric appropriate to the study of ft − MF. It
will also play an important role in the proof of Theorem 1. We may now
state our lower bounds:

Theorem 4. Let A(t) be any given completely monotone function on
[0, .). Then there is a strictly positive isotropic initial datum F ¥

L1
2(R3) 5 H.(R3) and F is analytic on R3 satisfying >R3(1, v, |v|2) F(v) dv=

(1, 0, 3), such that the unique solution ft(v) of the Boltzmann equation
(1.1) in C1([0, .); L1

2(R3)) with initial condition ft |t=0=F satisfies

||ft − MF ||L1 \ ||f̂t − MF
5 ||L. \ cA(t) -t \ 0 (1.29)

||ft − MF ||L1
2

\ |||ft − MF |||0 \ cA(t) -t \ 0 (1.30)

for some constant c > 0. Furthermore, if the collision kernel B( · ) satisfies
the Hölder condition given in the Corollary to Theorem 2, then the upper
bounds (1.24) and the lower bounds (1.29)–(1.30) are scale-equivalent.
More precisely, the following functions

||ft −MF||L1
2
, ||ft −MF||L1, FB, F(e−t), JF(e−t), A(t), ||f̂t −MF

5 ||L., |||ft −MF|||0

are pair wise scale-equivalent. Here the function FB, F( · ) is given in
Theorem 2.
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Note that this theorem, together with the examples in (1.27), shows
that even for weak metric based on ||| · |||0, the convergence rate, whatever the
smoothness of kernels, can be arbitrarily bad!

This is very different from what is known about solutions of the
Boltzmann equation for hard spheres, for which B(v − vg, s) is a multiple
of |v − vg |. In this case, it is known that for all initial data 0 [ F ¥ L1

2(R3),
the convergence to equilibrium in the L1-topology is always exponential
(see ref. 1 and related results (5, 18, 30, 31)). Theorem 4 shows that matters are
quite different in the Maxwellian case, and because of the relation between
L1-distance and the relative entropy, it shows that under just a finite energy
condition, the entropy may relax to its equilibrium value arbitrarily slowly.
While there are known examples to Cercignani’s conjecture (refs. 8 and 35)
concerning entropy production, these do not preclude that bad initial data
eventually evolves into nice initial data with good entropy production.
Theorem 4 does preclude this.

Theorem 4, together with Theorem 2 and its Corollary show that, for
a fixed Maxwellian Kernel B, the key property of the initial datum F that
determines the strong convergence rate is the decay rate of the function
JF(r) as r Q 0+. This is sort of a generalized ‘‘moment condition,’’ and it
is what matters rather than any other properties such as an entropy condi-
tion, smoothness, etc. (In fact, the initial datum constructed to prove
Theorem 4 is in C. 5 L..) Evidently, an essential difference between
‘‘hard’’ potentials such as hard spheres, is that in the hard case, the func-
tion Jft

(r) improves as t increases, while it can deteriorate in the
Maxwellian case, as discussed above the Corollary to Theorem 3.

It may be interesting to note that the method used for the Maxwellian
molecules model does not rely on the strict positivity (almost everywhere)
of the collision kernel B( · ) (i.e., nonnegativity is enough). For the entropy
method, which is so far still the only (direct or indirect) method that can
deal with general kernels, certain ‘‘strong’’ positivity is needed in order to
determine the entropy production. (See refs. 10, 11, 28, and 35).

1.4. Methods and Organization

Many features of Maxwellian molecules that we use here have already
been introduced. Among those that have not is the fundamental contraction
property of Maxwellian molecules, discovered by Tanaka. (25, 26) He proved
that if ft and gt are two solutions of (1.19) with initial data F and G
respectively, then for all t > 0

d2(ft, gt) [ d2(F, G).
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Here, d2 is a metric on B2(R3) often called the 2-Wasserstein distance. As
shown in ref. 27, this metric is equivalent with that induced on B2(R3) by
the norm ||| · |||0. Moreover, it had already been shown in ref. 16 that in this
equivalent metric, the contraction property still holds.

The strategy behind the proof of Theorem 1 may be summarized as
follows. First, in Section 2, we study the regularizing properties of repeated
Wild convolution (see Lemma 2.1). We then use this regularization to
prove that if limn Q . |||Q+

n (F) − MF |||0=0, then limn Q . ||Q+
n (F) − MF ||B0

=0.
Moreover, the rates of convergence are related in a quantitative way
depending only on the function WB defined in (1.21). This is given by
Lemma 2.5. In this part of the work, and elsewhere, we make extensive use
of the Fourier transform of Q+(f, g), and Bobylev’s formula (6) for this in
the Maxwellian case, (2.1).

In Section 3 we prove bounds on the rate at which limn Q . |||Q+
n (F)−MF|||B0

=0. Here is where the contraction property plays a crucial role. We take
general initial data F ¥ P2(R3; 0, 1), and approximate it by Fe in the ||| · |||0
norm where Fe has finite fourth moments. The function JF enters here, and
determines the size of the fourth moment for a given degree of approxima-
tion. We can further arrange that MFe

=MF. See Lemma 3.4 for the
details. Then, further developing methods from refs. 16 and 12, it is pos-
sible to estimate the rate at which |||Q+

n (Fe) − MF |||0 tends to zero, using the
fourth moment. Because of the contraction property, if both |||Fe − F|||0 and
|||Q+

n (Fe) − MF |||0 are small, so is |||Q+
n (F) − MF |||0. This is given in a series

of lemmas, culminating in Lemma 3.3
Section 4 begins by putting together the ideas discussed above to prove

Theorem 1. There is one more ingredient that deserves mention in the
introduction. Notice that Theorem 1 estimates the rate of convergence in
the || · ||B2

norm, not the total variation norm || · ||B0
. However, Lemma 4.1

tells us that for all G in P2(R3; 0, 1)

||G − M||B2
[ C0 ||G − M||B0

log 1 2e
||G − M||B0

2

where M is the Maxwellian in P2(R3; 0, 1). After taking into account the
affine transformation needed to transform a general distribution in B2(R3)
into one in P2(R3; 0, 1), we obtain Theorem 1. It is through this lemma that
Wg

B enters our estimates. Theorems 2 and its corollary are then deduced
from Theorem 1 using the Wild’s sum formula.

In Section 5 we prove Theorem 4. This consists of several steps.
Among the most novel is a pointwise comparison property for solutions
with the same initial data of the linearized Boltzmann equation and the full
non-linear Boltzmann equation. The comparison is made in the Fourier
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representation; see Lemma 5.2. Lemma 5.4, assuring the complete mono-
tonicity of A0(log(1+t)) when A0 is completely monotone, is proved here
as well.

Finally, in Section 6 we prove Theorem 3, the global stability in || · ||B2
,

and its corollary. We emphasize that the corollary to Theorem 3 depends
on the fact that we have global stability in the || · ||B2

norm, and not just the
total variation norm || · ||B0

. This is necessary to control the energy ‘‘tails.’’
The strategy is similar to that which led to Theorem 1: Global control of
the energy tails is easy and well known when the initial data has a finite
fourth moment. Hence we approximate general finite energy initial data in
the || · ||B2

norm by initial data FR with a finite fourth moment. Because of
the global stability in || · ||B2

, the energy tails of the true solution cannot be
much worse than those of the approximate solution.

2. ESTIMATE OF ||Q+
n (F)−MF||B0

BY |||Q+
n (F)−MF||| 0

We will make extensive use of the Fourier transform, and hence we
recall the Bobylev identity: (6, 27) For any B ¥ L1[ − 1, 1]

Q+(F, G)^ (t)=F
S2

B(Ot/|t|, sP) F̂(t+) Ĝ(t− ) ds, F, G ¥ B0(R3) (2.1)

where

t+=
t+|t| s

2
, t− =

t − |t| s

2
.

In deriving the Bobylev identity (2.1), use is made of the following identity:

F
S2

B(Ow, sP) k(Oz, sP) ds=F
S2

B(Oz, sP) k(Ow, sP) ds -w, z ¥ S2

(2.2)

where k is any bounded Borel function.
Our first Lemma is an estimate on the regularity produced by repeated

Wild convolution when B is smooth, and small relative velocities are elim-
inated:

Lemma 2.1. Suppose the kernel B is smooth: B ¥ C1([ − 1, 1]). Let
0 < d [ 1 be a constant, and let Q+( · , · ) and Qd+( · , · ) be collision operators
with the kernel B(Oz/|z|, sP) and B(Oz/|z|, sP) 1|z| \ d (z=v − vg) respectively.
Then for any 0 < s < 1/2, the 4-linear operator

(F1, F2, F3, F4) W Q+(Qd+(F1, F2), Qd+(F3, F3))
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is bounded from [B0(R3)]4 into H s(R3):

||Q+(Qd+(F1, F2), Qd+(F3, F4))||Hs [ CB, s d−2 D
4

i=1
||Fi ||B0

where

CB, s=
C0

`1 − 2s
(||B||1, .)2 ||B||L1([ − 1, 1]; (1 − t2) − 1/2 dt),

C0 is an absolute constant and ||B||1, .=||B||L.[ − 1, 1]+|| d
dt B||L.[ − 1, 1].

Proof. We first estimate Qd+(F, G)^ (t) for F, G ¥ B0(R3). In the
formula (1.17), take f(v)=e−iOt, vP and let z denote v − vg. We have

Qd+(F, G)^ (t)

=FF
R3 × R3

5F
S2

B(Oz/|z|, sP) e− i
2 |z| Ot, sP ds6 1{|z| \ d}e− i

2 Ot, v+v
*
P dF(v) dG(vg).

To compute the inner integral, parameterize S2 as follows: Let

s=cos(h)
t

|t|
+sin(h)[cos(f) i+sin(f) j], h ¥ [0, p], f ¥ [0, 2p]

where {t/|t|, i, j} is an orthonormal base of R3, then Ot, sP=|t| cos(h)
and

Oz/|z|, sP=Oz/|z|, t/|t|P cos(h)+`1 −Oz/|z|, t/|t|P2 sin(h) cos(f − a)

here a is independent of f. This gives

F
S2

B(Oz/|z|, sP) e− i
2 |z| Ot, sPds=F

p

0
sin(h) e− i

2 |z| |t| cos(h)Az, t(h) dh

where

Az, t(h)=F
2p

0
B(Oz/|z|, t/|t|P cos(h)+`1−Oz/|z|, t/|t|P2 sin(h) cos(f)) df.

Integration by parts gives

F
p

0
sin(h) e− i

2 |z| |t| cos(h)Az, t(h) dh

=
2

i |z| |t|
e− i

2 |z| |t| cos(h)Az, t(h)|h=p
h=0 −

2
i |z| |t|

F
p

0
e− i

2 |z| |t| cos(h) d
dh

Az, t(h) dh.
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By the inequalities |Az, t(h)| [ 2p ||B||L.[−1, 1] and | d
dh Az, t(h)| [ 2p ||d

dt B||L.[−1, 1],
we obtain

:F
S2

B(Oz/|z|, sP) e− i
2 |z| Ot, sP ds : [ 4p2 ||B||1, .

|z| |t|
.

This is a good bound for large |t|. For small |t|, the left hand side is tri-
vially bounded by 4p ||B||L.[ − 1, 1]. Together, these estimates yield

:F
S2

B(Oz/|z|, sP) e− i
2 |z| Ot, sP ds : [ 8p2 ||B||1, . d−1 1

1+|t|
, |z| \ d.

Therefore,

|Qd+(F, G)^ (t)| [ 8p2 ||B||1, . d−1 ||F||B0
||G||B0

1
1+|t|

, t ¥ R3. (2.3)

Now applying this estimate at t+ and t− we get

|Qd+(F1, F2)^ (t+)| |Qd+(F3, F4)^ (t− )|

[ 64p4(||B||1, .)2 d−2 1D
4

i=1
||Fi ||B0

2 1
(1+|t+|)(1+|t− |)

.

Since (1+|t+|)(1+|t− |) \ 1+1
2 |t|2 sin(h), it follows from the Bobylev

identity (2.1) that

|Q+(Qd+(F1, F2), Qd+(F3, F4))^ (t)|

[ 64p4(||B||1, .)2 d−2 1D
4

i=1
||Fi ||B0

2 2p F
p

0
B(cos(h))

sin(h) dh

1+1
2 |t|2 sin(h)

[ 28p5(||B||1, .)2 1F
p

0
B(cos(h)) dh2 d−2 1D

4

i=1
||Fi ||B0

2 1
1+|t|2 . (2.4)

This gives the H s-bounds since for 0 < s < 1/2, >R3 (1+|t|2) s − 2 dt [

8p/(1 − 2s). L

Remark. In fact, the proof gives pointwise estimates (2.3)–(2.4) for
the Fourier transforms of the convolved measures. As one sees, the single
convolution estimate (2.3) does not give a sufficiently strong pointwise
estimate to obtain the regularity that we require here, though under other
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conditions, results have been obtained in this case; see refs. 20, 31, 9,
and 21.

Before stating our next lemma, we recall some properties of convolu-
tion of measures with functions: Let m ¥ Bs(R3) and f ¥ L1

s (R3) (s \ 0). The
convolution m f f is a Borel measure defined by (due to Riesz representa-
tion theorem)

F
R3

k(v) d(m f f)(v)=F
R3
1F

R3
k(v+vg) f(vg) dvg

2 dm(v)

for all Borel functions k satisfying supv ¥ R3 |k(v)| (1+|v|2)−s/2 < .. From
this definition we have |m f f| [ |m| f |f|, m f f ¥ Bs(R3) and ||m f f||Bs

[

||m||Bs
||f||L1

s
. And if m \ 0, f \ 0, then m f f \ 0 and ||m f f||B0

=||m||B0
||f||L1.

Moreover if f, k ¥ C.

c (R3) then

F f f5 (t)=F̂(t) f̂(t), OF, kP0=(2p)−3 F
R3

F̂(t) k̂(−t) dt.

Let 0 [ f1 ¥ C.

c (R3) be defined by f1(z)=c exp{ − 1/(1 − |z|2)} for
|z| < 1, f1(z)=0 for |z| \ 1, and >R3 f1(z)=1. For any e > 0, let fe(z)=
e−3f1(z/e).

Lemma 2.2.

(i) Let F ¥ P2(R3; 0, 1). Then

sup
v ¥ R3

F
|v

*
− v| < d

dF(vg) [ C0(d−2 |||F − MF |||0+d3) -d > 0, (2.5)

||(F − MF) f fe ||B0
[ C0e−2(|||F − MF |||0)4/7

-0 < e [ 2. (2.6)

(ii) Let F ¥ B2(R3) 5 H s(R3), 0 < s [ 2. Then

||F f fe − F||B0
[ C0(||F||B2

)3/7 (||F||Hs)4/7 e4s/7
-0 < e [ 2. (2.7)

Here C0 > 0 is an absolute constant, fe ¥ C.

c (R3) is given above.

Proof. (i) Consider the convolution kd=1[0, 2d](| · |) f fd, where
fd(z)=d−3f1(z/d). We have 0 [ kd ¥ C.

c (R3), kd(v)=1 for |v| < d, and

kd
5 (t)=(1[0, 2d](| · |))^ (t) fd

5 (t)=d3(1[0, 2](| · |))^ (dt) f1
5 (dt).
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In the following, we denote by the same letter C0 various absolute con-
stants, and MF will be denoted simply by M. Then by F \ 0 and 1|v − v

*
| < d [

kd(v − vg) and kd(v − · ) ¥ C.

c (R3) we have

F
|v

*
− v| < d

dF(vg) [ F
R3

kd(v − vg) dF(vg)=F
R3

kd(v − vg) dF(vg)

− F
R3

kd(v − vg) M(vg) dvg+F
R3

kd(v − vg) M(vg) dvg,

and

F
R3

kd(v − vg) dF(vg) − F
R3

kd(v − vg) M(vg) dvg

=(2p)−3 F
R3

(F̂(t) − M̂(t)) kd
5 (t) e iOt, vP dt

[ (2p)−3 F
R3

|F̂(t) − M̂(t)| |kd
5 (t)| dt

=(2p)−3 F
R3

|F̂(t) − M̂(t)| d3(1[0, 2](| · |))^ (dt) | |f1
5 (dt)| dt

[ (2p)−3 |||F − M|||0 d3 4p

3
23 F

R3
|t|2 |f̂1(dt)| dt=C0d−2 |||F − M|||0.

(2.8)

On the other hand,

F
R3

kd(v − vg) M(vg) dvg [ 1 1
2p
23/2

F
R3

kd(vg) dvg=
16

3 `2p
d3.

This together with (2.8) gives (2.5).
Next, we prove (2.6). Using (1.13) and (1.15),

||(F − M) f fe ||B0
= sup

k ¥ C.

c (R3), ||k||L. [ 1
|O(F − M) f fe, kP0 |.

For any k ¥ C.

c (R3) satisfying ||k||L. [ 1 and for any R > 0, g > 0, consider
the decomposition:

k=k (1)
R, g+k (2)

R, g, k (1)
R, g=kqR, g, k (2)

R, g=k(1 − qR, g)
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where qR, g ¥ C.

c (R3) satisfies 0 [ qR, g [ 1 on R3, qR, g(v)=1 for |v| [ R,
and qR, g(v)=0 for |v| \ R+2g. Then k (1)

R, g, k (2)
R, g ¥ C.

c (R3) and |k (1)
R, g(v)|

[ 1|v| [ R+2g, |k (2)
R, g(v)| [ 1|v| \ R. We have

|O(F − M) f fe, kP0 | [ |O(F − M) f fe, k (1)
R, gP0 |+|O(F − M) f fe, k (2)

R, gP0 |.

Using the Cauchy–Schwarz inequality, the Plancherel identity and
fe
5 (t)=f1

5 (et), we have

|O(F − M) f fe, k (1)
R, gP0 |2

=(2p)−6 :F
R3

k (1)
R, g
5 (−t) fe

5 (t)[F̂(t) − M̂(t)] dt :
2

[ (2p)−6 1F
R3

|k (1)
R, g
5 (−t)|2 dt21F

R3
|fe
5 (t)[F̂(t) − M̂(t)]|2 dt2

=(2p)−3 1F
R3

|k (1)
R, g(v)|2 dv21F

R3
|f1
5 (et)[F̂(t) − M̂(t)]|2 dt2

[ (2p)−3 1F
R3

1|v| [ R+2g dv21F
R3

|f1
5 (et)|2 |t|4 |||F − M|||2

0 dt2

[ (2p)−3 4p

3
(R+2g)3 |||F − M|||2

0 e−7 F
R3

|t|4 |f1
5 (t)|2 dt.

This gives |O(F − M) f fe, k (1)
R, gP0 | [ C0(R+2g)3/2 e−7/2 |||F − M|||0. To esti-

mate the second term, we use the inequality >R3 |v|2 d |G f fe | (v) [

2 ||fe ||L1
2

||G||B2
, valid for all G ¥ B2(R3). We then have (because 0 < e [ 2)

|O(F − M) f fe, k (2)
R, gP0 | [ F

R3
1|v| \ Rd |(F − M) f fe | (v)

[ R−2 F
R3

|v|2 d |(F − M) f fe | (v) [ C0R−2.

Thus,

|O(F − M) f fe, kP0 | [ C0(R+2g)3/2 e−7/2 |||F − M|||0+C0R−2

for all R > 0, g > 0. Letting g Q 0 and taking sup with respect to k ¥

C.

c (R3) satisfying ||k||L. [ 1 gives ||(F − M) f fe ||B0
[ C0(R3/2e−7/2 |||F − M|||0

+R−2). Minimizing the last term with respect to R > 0 gives the inequality
(2.6).
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(ii) Suppose F ¥ B2(R3) 5 H s(R3), 0 < s [ 2. For any k ¥ C.

c (R3)
satisfying ||k||L. [ 1, let k (1)

R, g, k (2)
R, g be given above. Then,

|OF f fe − F, kP0 | [ |OF f fe − F, k (1)
R, gP0 |+|OF f fe − F, k (2)

R, gP0 |.

Estimating the first term on the right side:

|OF f fe − F, k (1)
R, gP0 |2

=(2p)−6 :F
R3

k̂ (1)
R, g(−t)[fe

5 (t) − 1] F̂(t)] dt :
2

[ (2p)−3 1F
R3

|k (1)
R, g(v)|2 dv21F

R3
|f1
5 (et) − 1|2 |F̂(t)|2 dt2

[ (2p)−3 1F
R3

1|v| [ R+2g dv21F
R3

|f1
5 (et) − 1|2 |F̂(t)|2 dt2 .

Since f1
5 (0)=1, “

“tj
f1
5 (0)=0 and the support of f1 is the unit ball, an

estimate using Taylor’s theorem provides |f1
5 (et) − 1| [ min{2, 1

2 e2 |t|2}.
The minimum of two positive numbers is less than any of their geometric
means, so

min{2, h} [ 21 − aha, h \ 0, 0 [ a [ 1. (2.9)

Choosing h=1
2 e2 |t|2, a=s/2 we get |f1

5 (et) − 1| [ 21 − se s |t| s. This gives

F
R3

|f1
5 (et) − 1|2 |F̂(t)|2 dt [ 4 1F

R3
|t|2s |F̂(t)|2 dt2 e2s,

and thus |OF f fe − F, k (1)
R, gP0 | [ C0(R+2g)3/2 ||F||Hs e s.

The estimate for the secondterm is muchthe same : |OF f fe − F, k (2)
R, gP0 | [

>|v| \ R d |F f fe − F| [ C0 ||F||B2
R−2, so that |OF f fe − F, kP0 | [ C0(R+2g)3/2

||F||Hs e s+C0 ||F||B2
R−2 for all R > 0, g > 0 and all k ¥ C.

c (R3) satisfying
||k||L. [ 1. Letting g Q 0 gives ||F f fe − F||B0

[ C0R3/2 ||F||Hs e s+C0 ||F||B2
R−2

for all R > 0. Taking minimum for the right hand side with respect to
R > 0, we obtain (2.7) . L

In proving our next results, we will require certain properties of the
functions WB(r) and Wg

B(r) defined in (1.21)–(1.22).
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Lemma 2.3. The functions WB(r), Wg
B(r) are continuous, non-

decreasing on [0, .) and have the following properties:

r
p(2+r)

[ WB(r) [ 1/p and WB(r) [ Wg
B(r), r \ 0;

WB(lr) [ (1+l) WB(r), Wg
B(lr) [ (1+l) Wg

B(r), l, r \ 0.

Proof. By supp B … [−1, 1] we have ||B( ·+h)−B||L1(R) [ 2 >1
−1 B(y) dy

=1/p -h ¥ R and WB(2) \ ||B( · +2) − B||L1(R3)=2 >1
−1 B(y) dy=1/p. These

imply that 0 [ WB(r) [ 1/p=WB(2) -r \ 0. Now the inequality 0 [ WB(r)
[ 1/p implies that |log WB(r)| \ 1 and so WB(r) [ WB(r) |log WB(r)|=
Wg

B(r) for all r \ 0.
To prove the other properties, we use the subadditivity of WB and Wg

B:

WB(r1+r2) [ WB(r1)+WB(r2), Wg
B(r1+r2) [ Wg

B(r1)+Wg
B(r2) -r1, r2 \ 0.

(2.10)

To see this, note that the function y W y |log y| is concave and increasing
from zero on [0, 1/e] which implies that (y1+y2) |log(y1+y2)| [ y1 |log y1 |
+y2 |log y2 |, y1, y2 ¥ [0, 1/e]. Since 0 [ WB(r) [ 1/p < 1/e and the func-
tion r W WB(r) is non-decreasing on [0, .), it follows that the function
r W Wg

B(r) is also non-decreasing on [0, .) and the first inequality in (2.10)
implies the second one. Thus we need only to prove the first inequality. Let
r1, r2 \ 0. We can assume that r1+r2 > 0. For any h ¥ R satisfying
|h| [ r1+r2, let h1= r1

r1+r2
h, h2= r2

r1+r2
h. Then h=h1+h2 and |h1 | [ r1,

|h2 | [ r2. By definition of WB( · ), this gives the first inequality in (2.10).
The inequalities in (2.10) and the monotonicity imply the continuity of

WB(r) and Wg
B(r). In fact, for instance for WB(r) we have |WB(r1) − WB(r2)|

[ WB(|r1 − r2 |), r1, r2 \ 0.
From (2.10) we have WB(nr) [ nWB(r) for all r \ 0, n=1, 2,... Let

l, r \ 0 and let [l] be the largest integer not exceeding l. Then, by mono-
tonicity,

WB(lr) [ WB((1+[l]) r) [ (1+[l]) WB(r) [ (1+l) WB(r).

Similarly we have Wg
B(lr) [ (1+l) Wg

B(r) for all l \ 0, r \ 0. Using the this
inequality, we have for all r > 0

1/p=WB(2)=WB
12

r
· r2 [ 11+

2
r
2 WB(r)=

r+2
r

WB(r).

Since WB(0)=0, this gives the inequality r [ p(r+2) WB(r) for all r \ 0. L
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For the later use, we observe the following:

F ¥ P2(R3; 0, 1) 2 |||F − MF |||0 [ min{2, 1
2 ||F − MF ||B2

}. (2.11)

Indeed, by Taylor’s theorem, we have that for F ¥ P2(R3; 0, 1),

F̂(t)=1 − F
1

0
(1 − y) F

R3
Ov, tP2 e−iOyt, vP dF(v) dy. (2.12)

Since MF is isotropic, we have >R3 Ov, tP2 MF(v) dv=|t|2, t ¥ R3, and thus

|F̂(t) − MF
5 (t)|

|t|2 [
1
2

F
R3

Ov, t/|t|P2 dF(v)

+
1
2

F
R3

Ov, t/|t|P2 MF(v) dv [
3
2
+

1
2
=2.

Hence |||F − MF |||0 [ 2. Also, for all t ¥ R3 0{0}

|F̂(t) − MF
5 (t)|

|t|2 [
1
2

F
R3

Ov, t/|t|P2 d |F − MF | (v) dy [
1
2

||F − MF ||B2
.

So |||F − MF |||0 [ 1
2 ||F − MF ||B2

.

Lemma 2.4. Let Fi ¥ P2(R3; 0, 1), i=1, 2, 3, 4, and let 0 < q [ 2
satisfy

min{|||F1 − M|||0, |||F2 − M|||0} [ q and min{|||F3 − M|||0, |||F4 − M|||0} [ q

where M is the Maxwellian in P2(R3; 0, 1). Then for e=q2/7 − 1/120,

||[(F1 p F2) p (F3 p F4)] f fe − (F1 p F2) p (F3 p F4)||B0
[ C0WB(q1/60)

where WB( · ) is defined in (1.21), fe is given above Lemma 2.2, and C0 < .

is an absolute constant.

Note. The present lemma will be applied together with Lemma 2.5
below. The exponents such as 2/7 − 1/120 and 1/60 in these two lemmas
are chosen to balance the effectiveness of these two lemmas together.

Proof. In the following, C0 (0 < C0 < .) denotes an absolute con-
stant that varies from line to line.

The first step is to approximate the given kernel B by one that is
smmoth so that Lemma 2.1 may be applied. Let j1(t)=c exp{ − 1/(1 − t2)}
for |t| < 1, j1(t)=0 for |t| \ 1, and choose c so that >R j1(t) dt=1. Let
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jl(t)=1
l j1(t

l), and Bl(t)=(B f fl)(t), 0 < l [ 2. Then Bl is also even and
satisfies ||Bl ||L1=||B||L1=1/2p and

||Bl − B||L1 [ WB(l), ||Bl ||L. [ C0l−1, ||Bl ||1, . [ C0l−2. (2.13)

Also, by Hölder’s inequality we have

F
1

−1

Bl(t)

`1 − t2
dt [ (||Bl ||L1)3/7 (||Bl ||L.)4/7 1F

1

−1
(1 − t2)−7/8 dt2

4/7

[ C0l−4/7.
(2.14)

Hence CBl, s < ., where CB, s is given in Lemma 2.1, and so Lemma 2.1 may
be applied.

Let Fi ¥ P2(R3; 0, 1), i=1, 2, 3, 4, and let Q+, Qd+, Q+
l , Qd+

l be the
collision gain operators with the kernels B(Oz/|z|, sP), B(Oz/|z|, sP) 1{|z| \ d},
Bl(Oz/|z|, sP) and Bl(Oz/|z|, sP) 1{|z| \ d} respectively, where z=v − vg as
above. Let

G(v)=Q+(F1, F2)(v), Gd(v)=Qd+(F1, F2)(v), Gl, d(v)=Qd+
l (F1, F2)(v),

H(v)=Q+(F3, F4)(v), Hd(v)=Qd+(F3, F4)(v), Hl, d(v)=Qd+
l (F3, F4)(v).

Then

||[(F1 p F2) p (F3 p F4)] f fe − (F1 p F2) p (F3 p F4)||B0

=||Q+(G, H) f fe − Q+(G, H)||B0
[ 2 ||Q+

l (Gl, d, Hl, d) − Q+(G, H)||B0

+||Q+
l (Gl, d, Hl, d) f fe − Q+

l (Gl, d, Hl, d)||B0
(2.15)

and

||Q+
l (Gl, d, Hl, d) − Q+(G, H)||B0

[ ||Q+
l (Gl, d, Hl, d) − Q+(Gl, d, Hl, d)||B0

+||Q+(Gl, d, Hl, d) − Q+(Gd, Hd)||B0

+||Q+(Gd, Hd) − Q+(G, H)||B0
.

Since Fi ¥ P2(R3; 0, 1), we have

||G||B0
, ||Gd ||B0

, ||Gl, d ||B0
, ||H||B0

, ||Hd ||B0
, ||Hl, d ||B0

[ 1.
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Using the formula (1.17),

||Q+
l (Gl, d, Hl, d)−Q+(Gl, d, Hl, d)||B0

[ 2p ||Bl −B||B0
[ 2pWB(l),

||Q+(Gl, d, Hl, d)−Q+(Gd, Hd)||B0
[ ||Gl, d −Gd||B0

+||Hl, d −Hd||B0
[ 4pWB(l),

||Q+(Gd, Hd)−Q+(G, H)||B0
[ ||Gd −G||B0

+||Hd −H||B0

and for ||Gd − G||B0
, ||Hd − H||B0

we have for instance

||Gd −G||B0
=||Qd+(F1, F2)−Q+(F1, F2)||B0

[ FF
R3 × R3

1{|v −v
*
| < d} dF1(v) dF2(vg).

Suppose, for instance, |||F1 − M|||0 [ q. Then by Lemma 2.2,

FF
R3 × R3

1{|v − v
*
| < d} dF1(v) dF2(vg)

[ ||F2 ||B0
sup
v
*

¥ R3
F

|v − v
*
| < d

dF1(v) [ C0(d−2 |||F1 − M|||0+d3) [ C0(d−2q+d3).

The same argument also holds for ||Hd − H||B0
, and therefore we get

||Gd − G||B0
+||Hd − H||B0

[ C0(d−2q+d3).

In summary,

2 ||Q+
l (Gl, d, Hl, d) − Q+(G, H)||B0

[ 12pWB(l)+C0(d−2q+d3). (2.16)

Next, we estimate ||Q+
l (Gl, d, Hl, d) f fe − Q+

l (Gl, d, Hl, d)||B0
. Since Bl is

smooth, for any 0 < s < 1/2, Lemma 2.1 provides

Q+
l (Gl, d, Hl, d) — Q+

l (Qd+
l (F1, F2), Qd+

l (F3, F4)) ¥ B2(R3) 5 H s(R3)

and, by (2.13) and (2.14),

||Q+
l (Gl, d, Hl, d)||Hs [

C0

`1 − 2s
(||Bl ||1, .)2 ||Bl ||L1([ − 1, 1], dt

`1 − t2
)d

−2

[
C0

`1 − 2s
l−4 − 4/7d−2.

Thus, by part (ii) of Lemma 2.2 with s=3/7, and the fact that
||Q+

l (Hl, d, Gl, d)||B2
[ 4,

||Q+
l (Gl, d, Hl, d) f fe − Q+

l (Gl, d, Hl, d)||B0

[ C0(||Q+
l (Gl, d, Hl, d)||Hs)4/7 e4s/7 [ C0(l−4 − 4/7d−2)4/7 e12/49.
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Together with (2.15) and (2.16), this implies that for all 0 < d [ 1 and
0 < l [ 2

||[(F1 p F2) p (F3 p F4)] f fe − (F1 p F2) p (F3 p F4)||B0

[ C0(WB(l)+d−2q+d3+(l−4 − 4/7d−2)4/7 e12/49).

Now choose l=q1/60, d=(q/2)1/180, then, recalling that e=q2/7 − 1/120

and 0 < q [ 2, we compute

||[(F1 p F2) p (F3 p F4)] f fe − (F1 p F2) p (F3 p F4)||B0

[ C0(WB(q1/60)+q1/60+q
12
49 (2

7 − 1
120) − 1

60 · 440
147),

and 12
49 (2

7 − 1
120 ) − 1

60 · 440
147 > 1

60 . Then by the property of WB( · ) and 0 < q [ 2 we
have

q1/60+q
12
49 (2

7 − 1
120) − 1

60 · 440
147 [ 3q1/60 [ 12pWB(q1/60). L

Lemma 2.5. Let F ¥ P2(R3; 0, 1). Then for any 0 < d < 1,

||Q+
n (F) − MF ||B0

[ C0(n−d+WB(q1/60
n )), n=1, 2, 3,... (2.17)

where

qn= max
n1 − d

[ m [ n
|||Q+

m(F) − MF |||0

and C0 is an absolute constant.

Proof. Throughtout the proof, we simply denote MF by M. Let
N=Kn1 − dL be the least integer not less than n1 − d. If n [ 4N, then 1 [

4N/n [ 4(n1 − d+1)/n [ 8n1 − d/n=8n−d and so

||Q+
n (F) − M||B0

[ 2 [ 16n−d.

So in the following we can assume that n > 4N. Also whenever Q+
n (F) − M

is considered, we can assume that qn > 0. Let fe(z)=(1/e)3 f1(z/e) be the
function used in the proof of Lemma 2.2, here and below e=q2/7 − 1/120

n .
(Recall that qn [ 2). Consider

||Q+
n (F) − M||B0

[ ||Q+
n (F) − Q+

n (F) f fe ||B0

+||(Q+
n (F) − M) f fe ||B0

+||M f fe − M||B0
.
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For the first term, consider the following decomposition (recall definition
of Q+

n (F)):

Q+
n (F) f fe − Q+

n (F)=[Pn(F) f fe − Pn(F)]+[Rn(F) f fe − Rn(F)]

(2.18)

where (using f p g=g p f)

Pn(F)=
1

n − 1
C

n − 2N

k=2N
Q+

k (F) p Q+
n − k(F),

Rn(F)=
2

n − 1
C

2N − 1

k=1
Q+

k (F) p Q+
n − k(F).

For the principle term Pn(F), consider further iteration

Q+
k (F) p Q+

n−k(F)

=
1

(k−1)(n−k−1)
C

k−1

i=1
C

n−k−1

j=1
[Q+

i (F) p Q+
k−i(F)] p [Q+

j (F) p Q+
n−k−j(F)]

which gives

||Pn(F) f fe − Pn(F)||B0

[
1

n − 1
C

n − 2N

k=2N

1
(k − 1)(n − k − 1)

C
k − 1

i=1
C

n − k − 1

j=1

× ||{[Q+
i (F) p Q+

k − i(F)] p [Q+
j (F) p Q+

n − k − j(F)]} f fe

− [Q+
i (F) p Q+

k − i(F)] p [Q+
j (F) p Q+

n − k − j(F)]||B0
.

For any k ¥ {2N,..., n − 2N}, any i ¥ {1,..., k − 1} and any j ¥ {1,...,
n − k − 1}, we have: either i \ k/2 \ N or k − i \ k/2 \ N; and either
j \ (n − k)/2 \ N or n − k − j \ (n − k)/2 \ N. This implies that for any
k ¥ {2N,..., n − 2N}

min{|||Q+
i (F) − M|||0, |||Q+

k − i(F) − M|||0} [ qn, i=1,..., k − 1;

min{|||Q+
j (F) − M|||0, |||Q+

n − k − j(F) − M|||0} [ qn, j=1,..., n − k − 1.

Since Q+
k (F) ¥ P2(R3; 0, 1) -k ¥ N, it follows from Lemma 2.4 that, with

e=q2/7 − 1/120
n ,

max
1 [ i [ k − 1, 1 [ j [ n − k − 1

||{[Q+
i (F) p Q+

k − i(F)] p [Q+
j (F) p Q+

n − k − j(F)]} f fe

− [Q+
i (F) p Q+

k − i(F)] p [Q+
j (F) p Q+

n − k − j(F)]||B0
[ C0WB(q1/60

n )
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for all k=2N,..., n − 2N. Thus

||Pn(F) f fe − Pn(F)||B0
[ C0WB(q1/60

n ), e=q2/7 − 1/120
n .

The estimate for the remainder Rn(F) is easy:

||Rn(F) f fe −Rn(F)||B0

[ 2 ||Rn(F)||B0
=

4
n−1

C
2N −1

k=1
||Q+

k (F) p Q+
n−k(F)||B0

=
4

n−1
(2N−1) [ C0n−d.

Thus by (2.18)

||Q+
n (F) f fe − Q+

n (F)||B0
[ C0(n−d+WB(q1/60

n )). (2.19)

For the second term, using Lemma 2.2 part (i) and notice that
|||Q+

n (F) − M|||0 [ qn, we have

||(Q+
n (F) − M) f fe ||B0

[ C0e−2(|||Q+
n (F) − M|||0)4/7

[ C0q−4/7+1/60
n q4/7

n =C0q1/60
n [ C04pWB(q1/60

n ). (2.20)

Finally for the third term,

||M f fe − M||B0
[ F

|z| [ 1
f1(z) 1F

R3
|M(v − ez) − M(v)| dv2 dz,

using the elementary inequality |ey − 1| [ |y| e |y| for y ¥ R, we have for all
|z| [ 1

|M(v − ez) − M(v)| [ C0ee−|v|2/2(1+|v|) e2 |v|.

So

||M f fe − M||B0
[ C0e [ C0q1/60

n [ C04pWB(q1/60
n ).

This together with (2.19) and (2.20) gives the estimate (2.17). L

3. ESTIMATE OF |||Q+
n (F)−MF||| 0

For any a \ 0 and H ¥ B2(R3) with vanishing total mass and suffi-
ciently many vanishing moments, |||H|||a is given by

|||H|||a=sup
|t| > 0

|Ĥ(t)|
|t|2+a

.
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These norms have been introduced into kinetic theory by Gabetta, Toscani,
and Wennberg in ref. 16. For Maxwellian molecules they have a contrac-
tion property, which, for a=0, is equivalent to the contraction property
first discovered by Tanaka. (25, 26)

For any constant L > 0 we introduce the following semi-norms
||| · ||| ( [ L)

a and ||| · ||| ( \ L)
a :

|||H||| ( [ L)
a = sup

0 < |t| [ L

|Ĥ(t)|
|t|2+a

, |||H||| ( \ L)
a =sup

|t| \ L

|Ĥ(t)|
|t|2+a

.

It is obvious that |||H|||a=max{|||H||| ( [ L)
a , |||H||| ( \ L)

a }. For any F ¥ B2(R3),
let

pi, j(F)=F
R3

(vivj − 1
3 |v|2 di, j) dF(v), i, j=1, 2, 3.

Here vi are components of v=(v1, v2, v3) and di, j=1 for i=j; =0 for
i ] j. For a constant L > 0, let qL be a C.

c -function on R3 satisfying

0 [ qL [ 1 on R3; qL(t)=1 for |t| [ L.

Then define a linear transformation F W PF: B2(R3) QB0(R3) through the
Fourier transform:

PF
5 (t)=−1

2
1C

i, j
pi, j(F) titj

2 qL(t), t ¥ R3.

i.e.,

dPF(v)=5− 1
2 C

i, j
pi, j(F)(2p)−3 F

R3
titjqL(t) e iOv, tP dt6 dv.

Referring to ref. 12, we now define the following functional on P2(R3; 0, 1)
5 Bs(R3) for s > 2:

Fg(F)=max{|||F − PF − M||| ( [ L)
a La+K |||PF |||0, |||F − M||| ( \ L)

0 } (3.1)

where K \ 1 is a constant, and a=(s − 2)/(s − 1), which implies that
Fg(F) < . for F ¥ P2(R3; 0, 1) 5 Bs(R3) (see also below).

The functions pi, j(F) have the following contraction property (refs. 16
and 12):

pi, j(F p G)=
a
2

[pi, j(F)+pi, j(G)], F, G ¥ P2(R3; 0, 1) (3.2)
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where

a=1
4+

3
4 · 2p F

p

0
B(cos(h)) sin(h) cos2(h) dh < 1. (3.3)

Lemma 3.1. Let s > 2 be a constant, a=(s − 2)/(s − 1). Then there
are finite constants L > 0, K \ 1, 0 < b < 1 and A > 0 which depend only
on the kernel B( · ) and s, such that

Fg(F p G) [
1 − b

2
[Fg(F)+Fg(G)] -F, G ¥ P2(R3; 0, 1) 5 Bs(R3)

and

|||F − M|||0 [ Fg(F) [ A ||F||1/(s − 1)
Bs

-F ¥ P2(R3; 0, 1) 5 Bs(R3)

where Fg is the functional given in (3.1) with the constants a, L and K.

Proof. We first prove the second estimate. Let F ¥ P2(R3; 0, 1) 5
Bs(R3). We have

|||F − M||| ( [ L)
0 [ |||F − PF − M||| ( [ L)

a La+|||PF |||0.

Since |||F − M|||0=max{|||F − M||| ( [ L)
0 , |||F − M||| ( \ L)

0 } and K \ 1, it follows
that

|||F − M|||0 [ Fg(F).

On the other hand, by definition of pi, j(F) and PF, we have

PF
5 (t)=−1

2
1F

R3
[Ov, tP2 − 1

3 |v|2 |t|2] dF(v)2 qL(t)

=−1
2
1F

R3
Ov, tP2 dF(v) − F

R3
Ov, tP2 M(v) dv2 qL(t)

This gives

|||PF |||0 [ 1 (3.4)

and

PF
5 (t)=−1

2 F
R3

Ov, tP2 dF(v)+1
2 |t|2, |t| [ L (3.5)
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and then using (2.12) we get for |t| [ L

F̂(t) − PF
5 (t) − M̂(t)=−F

1

0
(1 − y) F

R3
Ov, tP2 [e−iOyt, vP− 1] d[F − M](v) dy.

In the inequality (2.9) choosing a=(s − 2)/(s − 1), h=y |t| |v| and using
the Hölder inequality we obtain that for any H ¥ Bs(R3)

:F
R3

Ov, tP2 [e−iOyt, vP− 1] dH(v) : [ 21 − a |t|2+a ||H||1/(s − 1)
Bs

||H||a
B2

, 0 [ y [ 1.

Applying this inequality to H=F − M gives

|||F − PF − M||| ( [ L)
a [ 2−a ||F − M||1/(s − 1)

Bs
||F − M||a

B2
. (3.6)

On the other hand by the inequality (2.11), we have |||F − M||| ( \ L)
0 [

|||F − M|||0 [ 2. Since 4=||F||B2
[ ||F||Bs

, and since ||M||Bs
depends only

on s, it follows that

1 [ ||F||1/(s − 1)
Bs

, and ||F||1/(s − 1)
Bs

+||M||1/(s − 1)
Bs

[ Cs ||F||1/(s − 1)
Bs

.

It then follows from (3.4)–(3.6) that

Fg(F) [ (||F||1/(s − 1)
Bs

+||M||1/(s − 1)
Bs

) 22aLa+K+2 [ A ||F||1/(s − 1)
Bs

where the constant A depends only on s, L and K. This proves the second
estimate in the lemma.

Next we prove the first estimate. Let F, G ¥ P2(R3; 0, 1) 5 Bs(R3).
Then F p G ¥ P2(R3; 0, 1) 5 Bs(R3) so that Fg(F p G) makes sense. Con-
sider the decomposition:

F p G − PF p G − M=(F − PF) p (G − PG) − M+F p PG

+PF p G − PF p PG − PF p G

which gives

|||F p G − PF p G − M||| ( [ L)
a [ |||(F − PF) p (G − PG) − M||| ( [ L)

a

+|||F p PG+PF p G − PF p PG − PF p G ||| ( [ L)
a . (3.7)

Furthermore, since M p M=M,

(F − PF) p (G − PG) − M

=1
2(F − PF − M) p (G − PG+M)+1

2(F − PF+M) p (G − PG − M),
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and then, using the Bobylev identity (2.1),

[(F−PF) p (G−PG)]^ (t)−M̂(t)

=1
2 F

S2
B(Ot/|t|, sP)[F̂(t+)−PF

5 (t+)−M̂(t+)][Ĝ(t−)−PG
5 (t−)+M̂(t−)] ds

+1
2 F

S2
B(Ot/|t|, sP)[F̂(t+)−PF

5 (t+)+M̂(t+)][Ĝ(t−)−PG
5 (t−)−M̂(t−)] ds.

Recall that |t+|=cos(h/2) |t|, |t− |=sin(h/2) |t|, and notice that |PF
5 (t± )|

[ |||PF |||0 |t± |2 [ |t± |2, |PG
5 (t± )| [ |||PG |||0 |t± |2 [ |t± |2. We have for |t| [ L

|[F̂(t+) − PF
5 (t+) − M̂(t+)][Ĝ(t− ) − PG

5 (t− )+M̂(t− )]|

[ |||F − PF − M|||a cos2+a(h/2) |t|2+a [2+L2 sin2(h/2)],

|[F̂(t+) − PF
5 (t+)+M̂(t+)][Ĝ(t− ) − PG

5 (t− ) − M̂(t− )]|

[ |||G − PG − M|||a sin2+a(h/2) |t|2+a [2+L2 cos2(h/2)].

Since B̄(h) :=2pB(cos(h)) sin(h)=B̄(p − h), it follows that

|[(F − PF) p (G − PG)]^ (t) − M̂(t)|/|t|2+a

[ F
R3

B(Ot/|t|, sP) 1 |||F − PF − M||| ( [ L)
a cos2+a(h/2) 51+

1
2

L2 sin2(h/2)6

+|||G − PG − M||| ( [ L)
a sin2+a(h/2) 51+

1
2

L2 cos2(h/2)62 ds

=
l1(L)

2
(|||F − PF − M||| ( [ L)

a +|||G − PG − M||| ( [ L)
a )

where

l1(L)=F
p

0
B̄(h)(cos2+a(h/2)[1+1

2 L2 sin2(h/2)]

+sin2+a(h/2)[1+1
2 L2 cos2(h/2)]) dh.

Thus

|||(F − PF) p (G − PG) − M||| ( [ L)
a

[
l1(L)

2
(|||F − PF − M||| ( [ L)

a +|||G − PG − M||| ( [ L)
a ). (3.8)
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Next, we estimate |||F p PG+PF p G − PF p PG − PF p G ||| ( [ L)
a . We have

(F p PG)^ (t)+(PF p G)^ (t) − (PF p PG)^ (t) − PF p G
5 (t)

=F
S2

B(Ot/|t|, sP)([F̂(t+) − 1] PG
5 (t− )

+PF
5 (t+)[Ĝ(t− ) − 1] − PF

5 (t+) PG
5 (t− )) ds

+F
S2

B(Ot/|t|, sP)[PF
5 (t+)+PG

5 (t− )] ds − PF p G
5 (t), |t| [ L.

Note that the last difference is zero, i.e.,

PF p G
5 (t)=F

S2
B(Ot/|t|, sP)[PF

5 (t+)+PG
5 (t− )] ds, |t| [ L. (3.9)

In fact, applying the formula (2.2) (i.e., exchanging the positions of
O(v − vg)/|v − vg |, sP and Ot/|t|, sP), and recalling that F, G have zero
mean,

F
R3

Ov, tP2 d(F p G)(v)

=F
S2

B(Ot/|t|, sP) 1F
R3

Ov, t+P
2 dF(v)+F

R3
Ovg, t−P

2 dG(vg)2 ds.

Then applying (3.5) to F p G, F and G respectively and using |t|2 —

|t+|2+|t− |2 we obtain (3.9). Thus, for all 0 < |t| [ L we have

|(F p PG)^ (t)+(PF p G)^ (t) − (PF p PG)^ (t) − PF p G
5 (t)|

[ F
S2

B(Ot/|t|, sP)(|F̂(t+) − 1| |PG
5 (t− )|

+|PF
5 (t+)| |Ĝ(t− ) − 1|+|PF

5 (t+) PG
5 (t− )|) ds.

Since |F̂(t) − 1| [ 3
2 |t|2 (see (2.12)), |PF

5 (t)| [ |||PF |||0 |t|2, |||PF |||0 [ 1, and the
same is true for G, it follows that

|(F p PG)^ (t)+(PF p G)^ (t) − (PF p PG)^ (t) − PF p G
5 (t)|

[ (3
2 |||PF |||0+3

2 |||PG |||0+|||PF |||0 |||PG |||0) F
S2

B(Ot/|t|, sP) |t+|2 |t− |2 ds

[ 1
2 (|||PF |||0+|||PG |||0) |t|4, |t| [ L.
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Therefore,

|||F p PG+PF p G − PF p PG − PF p G ||| ( [ L)
a [ 1

2 (|||PF |||0+|||PG |||0) L2 − a

which, together with (3.7) and (3.8), yields

|||F p G−PF p G −M|||( [ L)
a La

[
l1(L)

2
(|||F−PF −M|||( [ L)

a La+|||G−PG −M|||( [ L)
a La)+

L2

2
(|||PF|||0+|||PG|||0).

Also, by the formula (3.2) we have

PF p G
5 (t)=

a
2

[PF
5 (t)+PG
5 (t)], |||PF p G |||0 [

a
2

[|||PF |||0+|||PG |||0]

which, together with the above inequality, gives

|||F p G − PF p G − M||| ( [ L)
a La+K |||PF p G |||0

[
l1(L)

2
(|||F − PF − M||| ( [ L)

a La+|||G − PG − M||| ( [ L)
a La)

+
L2+Ka

2
(|||PF |||0+|||PG |||0). (3.10)

It remains to estimate |||F p G − M||| ( \ L)
0 . Write, as above,

F̂(t+) Ĝ(t−)−M̂(t+) M̂(t−)

=1
2[F̂(t+)−M̂(t+)][Ĝ(t−)+M̂(t−)]+1

2[Ĝ(t−)−M̂(t−)][F̂(t+)+M̂(t+)].

Since M̂(t)=e−|t|2/2, |t+|=|t| cos(h/2), |t− |=|t| sin(h/2), we have

|t| \ L 2 M̂(t+) [ e−L2

2
cos2(h/2), M̂(t− ) [ e−L2

2
sin2(h/2).

Hence by |F̂(t± )|, |Ĝ(t± )| [ 1 and B̄(h)=B̄(p − h) we have for all |t| \ L

|(F p G)^ (t) − M̂(t)|
|t|2

[
1
2

F
S2

B(Ot/|t|, sP) 1 |F̂(t+) − M̂(t+)|
|t+|2 [1+M̂(t− )] cos2(h/2)

+
|Ĝ(t− ) − M̂(t− )|

|t− |2 [1+M̂(t+)] sin2(h/2)2 ds
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[
1
2

F
p

0
B̄(h)(|||F − M|||0 [1+e−L2

2
sin2(h/2)] cos2(h/2)

+|||G − M|||0 [1+e−L2

2
cos2(h/2)] sin2(h/2)) ds

=
l2(L)

2
[|||F − M|||0+|||G − M|||0]

where

l2(L)=F
p

0
B̄(h) (1

2 [1+e−L2

2
sin2(h/2)] cos2(h/2)+1

2 [1+e−L2

2
cos2(h/2)] sin2(h/2)) dh.

Thus,

|||F p G − M||| ( \ L)
0 [

l2(L)
2

[|||F − M|||0+|||G − M|||0],

and since |||F − M|||0 [ Fg(F) we obtain

|||F p G − M||| ( \ L)
0 [

l2(L)
2

[Fg(F)+Fg(G)]. (3.11)

Note that by definition of l1(L) we can choose a small L > 0 such that
l1(L) < 1. Since 0 < l2(L) and a < 1, we can choose b > 0 such that

max{l1(L), l2(L), a} < 1 − b.

We then choose the constant K such that

1 [ K and
L2+Ka

1 − b
[ K, e.g., K=max 31,

L2

1 − a − b
4 .

By (3.10), (3.11), and by definition of Fg( · ), we then have

|||F p G − PF p G − M||| ( [ L)
a La+K |||PF p G |||0

[
1 − b

2
1 |||F − PF − M||| ( [ L)

a La+
L2+Ka

1 − b
|||PF |||0

+|||G − PG − M||| ( [ L)
a La+

L2+Ka
1 − b

|||PG |||0 2 [
1 − b

2
[Fg(F)+Fg(G)].
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and

|||F p G − M||| ( \ L)
0 [

1 − b
2

[Fg(F)+Fg(G)].

Therefore

Fg(F p G) [
1 − b

2
[Fg(F)+Fg(G)].

Finally we note that the constants L, K, and b depend only on B( · ) and
a=(s − 2)/(s − 1). L

Lemma 3.2. Let 0 < c < 1 be a constant and an be real numbers
with the relation

0 [ an [
c

n − 1
C

n − 1

k=1
ak, n=2, 3,...

Then

an [ c 12
n
21 − c

a1, n=2, 3,... (3.12)

Proof. Consider

An=
1

n − 1
C

n − 1

k=1
ak, n=2, 3,...

By assumption we have an [ cAn, n=2, 3,... This implies for any n \ 2,

An+1=
1
n

C
n

k=1
ak [

1
n

[(n − 1) An+cAn]=11 −
b
n
2 An [ 1 n

n+1
2b

An

where b=1 − c > 0. This implies that An [ (2
n)

b A2, n \ 2. Since an [ cAn

and A2=a1, this gives the inequality (3.12). L

Lemma 3.3. Let s > 2 be a constant and let 0 < b < 1 be the con-
stant obtained in Lemma 3.1. Then there is a constant 0 < C < . which
depends only on the kernel B( · ) and s, such that for all F ¥

P2(R3; 0, 1) 5 Bs(R3)

|||Q+
n (F) − M|||0 [ C ||F||1/(s − 1)

Bs
11

n
2b

, n=1, 2, 3,...
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Proof. Let Fg be the functional given by (3.1) and let F ¥

P2(R3; 0, 1) 5 Bs(R3). Since Q+
n (F) ¥ P2(R3; 0, 1) 5 Bs(R3), Fg(Q+

n (F))
makes sense. By Lemma 3.1, (1.10) and notice that the functional F W PF

is linear, PQ+
n (F)=

1
n − 1 ;n − 1

k=1 PQ+
k (F) p Q+

n − k(F), we have

Fg(Q+
n (F)) [

1
n − 1

C
n − 1

k=1
Fg(Q+

k (F) p Q+
n − k(F))

[
1 − b
n − 1

C
n − 1

k=1
Fg(Q+

k (F)), n=2, 3,...

Therefore by Lemma 3.2 (with c=1 − b) and Lemma 3.1

Fg(Q+
n (F)) [ (1 − b) 12

n
2b

Fg(F) [ (1 − b) 2bA ||F||1/(s − 1)
Bs

11
n
2b

, n \ 2.

Thus with C=2bA which depends only on B( · ) and s and using Lemma 3.1
again we obtain |||Q+

n (F)−M|||0 [ Fg(Q+
n (F)) [ C ||F||1/(s −1)

Bs
n−b, n=1, 2, 3,...

L

A natural connection between Lemma 2.5 and Lemma 3.3 is given by
the following lemma:

Lemma 3.4. Let F ¥ P2(R3; 0, 1). Then for any 0 < e < ., there is
an Fe ¥ P2(R3; 0, 1) 5 B4(R3) such that

||Fe ||B4
[ 280(1+3e)5 1F

R3
|v| dF(v)2

−4

·
1
e

(3.13)

and

|||Fe − F|||0 [ 15(e1/3+JF(e1/3)). (3.14)

where JF(r) is defined in (1.20).

Proof. Given any e > 0. By Riesz representation theorem, there is a
unique measure Fe ¥ B0 such that

F
R3

f(v) dFe(v)=l F
R3

f(v
r − ve)

1+e |v|2 dF(v) (3.15)
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for all f ¥ Cb(R3), where l=le > 0, r=re > 0 and ve ¥ R3 are determined
uniquely by the system of equations

l F
R3

(1, v
r − ve, |v

r − ve |2)
1+e |v|2 dF(v)=(1, 0, 3) (3.16)

which is solved as follows:

l=
1

>R3
1

1+e |v|2 dF(v)
, ve=

1
r

·
>R3

v
1+e |v|2 dF(v)

>R3
1

1+e |v|2 dF(v)

r2=
(>R3

1
1+e |v|2 dF(v))(>R3

|v|2

1+e |v|2 dF(v)) − |>R3
v

1+e |v|2 dF(v)|2

3(>R3
1

1+e |v|2 dF(v))2
.

Note that by Cauchy–Schwarz inequality, the right hand side of the last
equality is strictly positive, as it must be for this to define r.

This shows that the function Fe satisfying (3.15)–(3.16) is well defined.
Moreover since F ¥ P2(R3; 0, 1), it easily seen that Fe ¥ P2(R3; 0, 1) 5
B4(R3) and the equality (3.15) holds for all Borel functions f satisfying
supv ¥ R3 |f(v)| (1+|v|2)−2 < ..

We now prove (3.13) and (3.14). The first step is to estimate l, r, ve.
For any real number y, using >R3 v dF(v)=0 we have

: F
R3

v
1+e |v|2 dF(v):

2

=: F
R3

(1 − y(1+e |v|2)) v
1+e |v|2 dF(v):

2

[ 1F
R3

1
1+e |v|2 dF(v) − 2y+(1+3e) y221F

R3

|v|2

1+e |v|2 dF(v)2 .

The last term takes on its minimum at y=1/(1+3e), and hence

: F
R3

v
1+e |v|2 dF(v):

2

[ 1F
R3

1
1+e |v|2 dF(v) −

1
1+3e

21F
R3

|v|2

1+e |v|2 dF(v)2 .

(3.17)

This implies that

F
R3

1
1+e |v|2 dF(v) \

1
1+3e
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and

1F
R3

1
1+e |v|2 dF(v)21F

R3

|v|2

1+e |v|2 dF(v)2− : F
R3

v
1+e |v|2 dF(v):

2

\
1

1+3e
F

R3

|v|2

1+e |v|2 dF(v) > 0,

and hence we obtain

1 [ l=
1

>R3
1

1+e |v|2 dF(v)
[ 1+3e (3.18)

and

r2 \
1

3(1+3e)
1F

R3

|v|2

1+e |v|2 dF(v)21F
R3

1
1+e |v|2 dF(v)2

−2

. (3.19)

The last inequality implies that

1
r2 [ 3(1+3e) 1F

R3

|v|2

1+e |v|2 dF(v)2
−1

. (3.20)

Also,

|ve | [ 3 `e . (3.21)

In fact, by the estimates (3.17), (3.19), and >R3
1

1+e |v|2 dF(v) [ 1, we have

|ve |2=
1
r2 ·

|>R3
v

1+e |v|2 dF(v)|2

(>R3
1

1+e |v|2 dF(v))2
[ 3(1+3e) 1F

R3

1
1+e |v|2 dF(v) −

1
1+3e

2 [ 9e.

Now we prove (3.13). We have

||Fe ||B4
=7+F

R3
|v|4 dFe(v)=7+l F

R3

|v
r − ve |4

1+e |v|2 dF(v),

: v
r

− ve
:4 [ 8(|v|4 r−4+|ve |4), F

R3

|v|4

1+e |v|2 dF(v) [
3
e

.
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Hence by the estimates (3.18), (3.20), and (3.21),

F
R3

|v|4 dFe(v) [ 8l F
R3

(|v|4 r−4+|ve |4)
1

1+e |v|2 dF(v)

[ 8(1+3e) 1 (3(1+3e))2 1F
R3

|v|2

1+e |v|2 dF(v)2
−2

·
3
e
+34e22 .

Furthermore, using the Cauchy–Schwarz inequality,

1F
R3

|v|2

1+e |v|2 dF(v)2
−1

[ (1+3e) 1F
R3

|v| dF(v)2
−2

, 3−2 [ 1F
R3

|v| dF(v)2
−4

with the consequence that

F
R3

|v|4 dFe(v) [ 8(1+3e)(33(1+3e)4+36e3) 1F
R3

|v| dF(v)2
−4

·
1
e

.

Therefore, we compute

||Fe ||B4
[ [7 · 32e+8(1+3e)(33(1+3e)4+36e3)] 1F

R3
|v| dF(v)2

−4

·
1
e

[ 280(1+3e)5 1F
R3

|v| dF(v)2
−4

·
1
e

.

This proves (3.13). (The constant 280 is correct, though arriving to it
requires close and careful estimation. However, the value of this constant is
not crucial for the argument that follows, and the reader may substitute
more expeditionous estimation if desired.)

Next, note that by Fe, F ¥ P2(R3; 0, 1) we have |||Fe − F|||0 [ 3. This
implies that if e \ 1/9, then |||Fe − F|||0 [ 3 < 15e1/3. So in the following we
assume that 0 < e < 1/9. We need to estimate >R3

e |v|2

1+e |v|2 |v|2 dF(v) and
|r2 − 1|. We have

F
R3

e |v|2

1+e |v|2 |v|2 dF(v) [
e1/3

1+e1/3 F
|v| [ e

− 1/3
|v|2 dF(v)+F

|v| > e
− 1/3

|v|2 dF(v)

[ 3e1/3+JF(e1/3) [ 3(e1/3+JF(e1/3)). (3.22)

This gives

F
R3

|v|2

1+e |v|2 dF(v)=3 − F
R3

e |v|2

1+e |v|2 |v|2 dF(v) \ 3 − 3(e1/3+JF(e1/3))
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So by (3.19) we obtain (since 0 < e < 1/9)

r2 \
1

1+3e
·
1
3

F
R3

|v|2

1+e |v|2 dF(v)

\ (1 − 3e)(1 − (e1/3+JF(e1/3))) \ 1 − 2(e1/3+JF(e1/3))

On the other hand, by the equation that defines r2,

r2 [
>R3

|v|2

1+e |v|2 dF(v)

3 >R3
1

1+e |v|2 dF(v)
[

3

3 >R3
1

1+e |v|2 dF(v)
=l [ 1+3e ( < 4/3).

Thus,

|r2 − 1| [ 2(e1/3+JF(e1/3)). (3.23)

Also, by (3.21) and e < 1/9 we have

|ve | [ 3 `e [ 3(e1/3+JF(e1/3))3/2 and |ve | [ 1. (3.24)

Now, to prove (3.14), consider

|Fe
5 (t) − F̂(t)|

|t|2 [
|Fe
5 (t) − Fe

5 (rt)|
|t|2 +

|Fe
5 (rt) − F̂(t)|

|t|2 . (3.25)

For the first term, use the fact that for any H ¥ P2(R3; 0, 1)

: d
dt

(Ĥ(tt)) : [ F
t

0

1F
R3

|v|2 |t|2 dH(v)2 dy=3 |t|2 t, t \ 0.

Taking H=Fe and using (3.23) gives

|Fe
5 (t) − Fe

5 (rt)| [ 3 |t|2 :F 1

r

t dt :=3 |t|2 |12 (1 − r2)| [ 3(e1/3+JF(e1/3)) |t|2.

Therefore

|Fe
5 (t) − Fe

5 (rt)|
|t|2 [ 3(e1/3+JF(e1/3)), t ¥ R3 0{0}. (3.26)

For the second term, we prove that

|Fe
5 (rt) − F̂(t)|

|t|2 [ 12(e1/3+JF(e1/3)), t ¥ R3 0{0}. (3.27)
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This estimate holds for |t| \ 1
`6

(e1/3+JF(e1/3))−1/2 because ||Fe
5 ||L.,

||F̂||L. [ 1. Now suppose 0 < |t| [ 1
`6

(e1/3+JF(e1/3))−1/2. Using (2.12),

−
Fe
5 (rt) − F̂(t)

|t|2

=F
1

0
(1 − y) 1F

R3
Ov, rzP2 e−iOyrt, vP dFe(v) − F

R3
Ov, zP2 e−iOyt, vP dF(v)2 dy

where z=t/|t|. Now apply (3.15) with f(v)=Ov, rzP2 e−iOyrt, vP. Then

−
Fe
5(rt)−F̂(t)

|t|2

=F
1

0
(1−y) 1l F

R3

Ov−rve, zP2

1+e |v|2 e−iOyt, v−rveP dF(v)−F
R3

Ov, zP2 e−iOyt, vP dF(v)2 dy

=F
1

0
(1−y)(l−1) F

R3

Ov−rve, zP2

1+e |v|2 e−iOyt, v−rveP dF(v) dy

+F
1

0
(1−y) F

R3
1Ov−rve, zP2 −Ov, zP2

1+e |v|2
2 e−iOyt, v−rveP dF(v) dy

+F
1

0
(1−y) F

R3
Ov, zP2 1 1

1+e |v|2 −12 e−iOyt, v−rveP dF(v) dy

+F
1

0
(1−y) F

R3
Ov, zP2 (e−iOyt, v−rveP−e−iOyt, vP) dF(v) dy

:=I1+I2+I3+I4.

Estimating I1: By (3.18), r2 [ 4/3 and |ve | [ 1 we have

|I1 | [
3e

2
F

R3
(Ov, zP−Orve, zP)2 dF(v)=

3e

2
1F

R3
Ov, zP2 dF(v)+Orve, zP22

[
3e

2
(3+r2 |ve |2) [

13
2

e2/3 · e1/3 [ 2(e1/3+JF(e1/3)).

Estimating I2: By (3.21) and r2 [ 4/3 we compute

|I2 | [ 1
2 F

R3
(2r |ve | |v|+r2 |ve |2) dF(v)=r |ve | F

R3
|v| dF(v)+1

2 r2 |ve |2

[ 6 `e+6e [ 6e1/3 [ 6(e1/3+JF(e1/3)).
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Estimating I3: By the estimate (3.22) we have

|I3 | [
1
2

F
R3

e |v|2

1+e |v|2 |v|2 dF(v) [
3
2

(e1/3+JF(e1/3)).

Estimating I4: By |t| [ 1
`6

(e1/3+JF(e1/3))−1/2, r [ 2/`3 and using the
inequality in (3.24),

|I4 | [ |t| r |ve | 1F
1

0
(1 − y) y dy2 F

R3
|v|2 dF(v)=|t| r |ve | ·

1
2

[
1

`2
(e1/3+JF(e1/3))−1/2 · (e1/3+JF(e1/3))3/2=

1

`2
(e1/3+JF(e1/3)).

Thus, for 0 < |t| [ 1
`6

(e1/3+JF(e1/3))−1/2 we obtain

|Fe
5 (rt) − F̂(t)|

|t|2 [ C
4

k=1
|Ik | [ 12(e1/3+JF(e1/3)).

This proves (3.27). Combining (3.25)–(3.27) gives us (3.14). L

4. UPPER BOUNDS ON THE CONVERGENCE RATE

In this section we prove Theorem 1, Theorem 2, and the Corollary to
Theorem 2. We begin by introducing the affine transform of distributions.
This is necessary so that we may apply the results of the previous sections
to distributions that do not necessarily belong to P2(R3; 0, 1).

Let F ¥ B2(R3). Let v0 ¥ R3 and T > 0. By Riesz Representation
Theorem, we can define an affine transform FT of F by the following
equality

F
R3

f(v) dFT(v)=F
R3

f 1v − v0

`T
2 dF(v) (4.1)

for all f ¥ Cb(R3). Since F ¥ B2(R3), the equality (4.1) can be extended to
all Borel function f satisfying supv ¥ R3 |f(v)| (1+|v|2)−1 < .. It is easy to
check that the following properties hold:

F, G ¥ P2(R3; v0, T) 2 FT ¥ P2(R3; 0, 1) and (F p G)T=FT p GT,

F ¥ P2(R3; v0, T) 2 (Q+
n (F))T=Q+

n (FT), n=1, 2, 3,... .
(4.2)
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The norm || · ||B0
defined in (1.14) with s=0 is invariant under this

affine transform: ||F||B0
=||FT ||B0

. But this invariance does not hold for the
norm || · ||B2

. However we have the following inequality

||F||B2
[ (1+2T+2 |v0 |2) ||FT ||B2

-F ¥ B2(R3). (4.3)

Similarly, if F \ 0, then using (4.1) with f(v)=|v|2 1|v| >
1+|v0| r

`T r
we have

JFT
1 `T r

1+|v0 | r
2 [

2(1+|v0 |2)
T

JF(r), 0 < r [ 1. (4.4)

Another property which will be used in this section is the following
variant of Tanaka’s fundamental non-expansion property

|||Q+
n (F) − Q+

n (G)|||0 [ |||F − G|||0, F, G ¥ P2(R3; v0, T), n=1, 2,... .
(4.5)

This in turn is a consequence of the fact that if F1, F2, G1, G2 ¥ P2(R3) have
the same mean, then

|||F1 p G1 − F2 p G2 |||0 [ 1
2(|||F1 − F2 |||0+|||G1 − G2 |||0).

This is much easier to prove for the norm ||| · |||0, using the Bobylev identity,
than in Tanaka’s original setting.

The following simple lemma plays an important role in the proof; it
gives us convergence in || · ||B2

essentially for free, once we have it in || · ||B0
.

Lemma 4.1. For all G in P2(R3; 0, 1),

||G − M||B2
[ C0 ||G − M||B0

log 1 2e
||G − M||B0

2 , (4.6)

where M=MG is the Maxwellian in P2(R3; 0, 1), C0 is an absolute con-
stant.

Proof. If G=M, there is nothing to prove. Otherwise, consider the
identity (using the Jordan decomposition)

|G − M|=G − M+2(M − G)+

where (m)+=1
2 (|m|+m) denotes the positive part of m. Then since G and M

both belong to P2(R3; 0, 1) and (M − G)+ [ |G − M| and (M − G)+ [ M, it
follows that for any R \ 1
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||G − M||B2
=2 F

R3
(1+|v|2) d(M − G)+ (v)

[ 4R ||G − M||B0
+(2p)−3/2 e−R/4 F

|v| > `R

(1+|v|2) e−|v|2/4 dv

[ 4R ||G − M||B0
+C0e−R/4. (4.7)

Choose R=4 log(2e/||G − M||B0
). Then R \ 1 because 0 < ||G − M||B0

[ 2.
This together with (4.7) gives (4.6). L

It is worth noting that the proof may be applied much more generally.
For the sake of simplicity, we have avoided a general formulation.

Before proving Theorem 1, let us first note that the function
r W FB, F(r) given in Theorem 1 is bounded, non-decreasing on [0, .),
continuous at r=0 and FB, F(0)=0 because the functions r W Wg

B(r) and
r W JF(r) are bounded, non-decreasing on [0, .), continuous at r=0 and
Wg

B(0)=JF(0)=0.

Proof of Theorem 1. The proof of the estimate (1.23) for
F ¥ P2(R3; v0, T) is essentially equivalent to that for the standard case
F ¥ P2(R3; 0, 1). However since the function JF( · ) is not invariant under
the affine transform of distributions, we have to maintain the notation F
and denote by FT ¥ P2(R3; 0, 1) the affine transform of F. From the affine
transform (4.1) and (4.2) we have

(Q+
n (F) − MF)T=(Q+

n (F))T − (MF)T=Q+
n (FT) − M.

where M is the Maxwellian distribution in P2(R3; 0, 1). This together with
the inequality (4.3) gives

||Q+
n (F) − MF ||B2

[ (1+2T+2 |v0 |2) ||Q+
n (FT) − M||B2

. (4.8)

Next we prove that

||Q+
n (FT) − M||B0

[ C (0)
B, FWB((n−a+JF(n−a))1/60), (4.9)

C (0)
B, F=CB(1+|v0 |)1/30 (1+T)1/20 1F

R3
|v − v0 | dF(v)2

−1/30

(4.10)

where the constant CB depends only on B( · ), but will change from line to line.
We shall apply Lemma 2.5 to the measure FT ¥ P2(R3; 0, 1). We first

prove that for any e > 0

|||Q+
m(FT) − M|||0 [ 15(e1/3+JFT

(e1/3))+CB(CFT, e)1/3 11
e
21/3 1 1

m
2b

(4.11)
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where

CFT, e=280(1+3e)5 1F
R3

|v| dFT(v)2
−4

=280(1+3e)5 T2 1F
R3

|v−v0| dF(v)2
−4

(4.12)

and here 0 < b < 1 is the constant in Lemma 3.3 with s=4. Let FT, e ¥

P2(R3; 0, 1) 5 B4(R3) be the measure given in Lemma 3.4 with respect to
the measure FT and s=4. By (4.5), Lemma 3.3 and Lemma 3.4 we have

|||Q+
m(FT) − M|||0 [ |||Q+

m(FT) − Q+
m(FT, e)|||0+|||Q+

m(FT, e) − M|||0

[ |||FT − FT, e |||0+CB(||FT, e ||B4
)1/3 1 1

m
2b

[ 15(e1/3+JFT
(e1/3))+CB(CFT, e)1/3 11

e
21/3 1 1

m
2b

.

This proves (4.11).
To prove (4.9), we need to balance some exponents: Suppose e=n−3a

for some constants a > 0. According to Lemma 2.5 and the above estimate
(4.11), we see that the exponents a and d (see Lemma 2.5) are best chosen
as a=1

2 (1 − d) b, d=a/60. This gives

a=
60b

120+b
, d=

b
120+b

.

The reason will be clear from the following derivation. Let

qn= max
n1 − d

[ m [ n
|||Q+

m(FT) − M|||0, n \ 1.

For any integer n \ 1, choose

e=1 `T n−a

1+|v0 | n−a

23

.

Then by the inequality (4.4) and (4.12) we have

JFT
(e1/3)=JFT

1 `T n−a

1+|v0 | n−a

2 [
2(1+|v0 |2)

T
JF(n−a),

(CFT, e)1/3 [ (280(1+3T3/2)5)1/3 T2/3 1F
R3

|v − v0 | dF(v)2
−4/3

,
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and therefore using (4.11) and a − (1 − d) b=−a we get

|||Q+
m(FT) − M|||0 [ C (1)

B, F(n−a+JF(n−a)), m \ n1 − d

where

C (1)
B, F=CB

3`T+
(1+|v0 |2)

T

+(1+T3/2)5/3 (1+|v0 |) T1/6 1F
R3

|v − v0 | dF(v)2
−4/34 .

Thus

q1/60
n [ (C(1)

B, F)1/60 (n−a+JF(n−a))1/60 :=C(2)
B, F(n−a+JF(n−a))1/60.

By the property of WB( · ) given in Lemma 2.3 we have, with C (3)
B, F=

1+C(2)
B, F,

WB(q1/60
n ) [ WB(C(2)

B, F(n−a+JF(n−a))1/60) [ C (3)
B, FWB((n−a+JF(n−a))1/60).

Therefore, by Lemma 2.5 and n−d=n−a/60 [ 3pWB(n−a/60) we obtain that
for all n \ 1

||Q+
n (FT) − M||B0

[ C0{n−d+WB(q1/60
n )} [ C (4)

B, FWB((n−a+JF(n−a))1/60)

where C (4)
B, F=C0(3p+C (3)

B, F). Next, we compute the constants: By definition
of C (i)

B, F (i=1, 2, 3, 4) we have

C (4)
B, F [ (3p+1) C0

+C0(CB)1/60 (1+|v0 |)1/30 3`T+
1
T

+
(1+T3/2)5/3 T1/6

(>R3 |v − v0 | dF(v))4/3
41/60.

Furthermore, by F ¥ P2(R3; v0, T) we have 1/T [ 3(>R3 |v − v0 | dF(v))−2

which gives, after application of the arithmetic-geometric mean inequality
to eliminate fractional powers,

`T+
1
T

+(1+T3/2)5/3 T1/6 1F
R3

|v − v0 | dF(v)2
−4/3

[ 6 1F
R3

|v − v0 | dF(v)2
−2

(1+T)2
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andsoC (4)
B, F [ CB(1+|v0 |)1/30 (1+T)1/20 (>R3 |v − v0 | dF(v))−1/30 :=C(0)

B, F. This
proves (4.9).

For later estimates, we require the coefficient C (0)
B, F of WB( · ) is not less

than 2e. In fact we have

(1+T)1/20 1F
R3

|v − v0 | dF(v)2
−1/30

\ (1+T)1/20 (3T)−1/60 > 1.

Thus if CB \ 2e, then C (0)
B, F \ 2e. Of course we can assume that CB \ 2e.

Now from (4.9) and C (0)
B, F \ 2e and the definition of Wg

B( · ) one easily
checks that

||Q+
n (FT) − M||B0

log 1 2e
||Q+

n (FT) − M||B0

2 [ C (0)
B, FWg

B((n−a+JF(n−a))1/60).
(4.13)

Combining the estimates (4.8), (4.6), (4.13), and (4.10) we obtain that for
any n ¥ N

||Q+
n (F) − MF ||B2

[ (1+2T+2 |v0 |2) C0C (0)
B, FWg

B((n−a+JF(n−a))1/60)

and (1+2T+2 |v0 |2) C0C (0)
B, F [ CB(1+|v0 |)3 (1+T)2 (>R3 |v − v0 | dF(v))−1/30

:=CB, F. This proves (1.23) and the proof of Theorem 1 is completed. L

Proof of Theorem 2. Recalling that the Wild sum (1.9) also holds
for distributional solutions and using the identity ;.

n=1 e−t(1 − e−t)n − 1=1,
t \ 0 we have

||ft − MF ||B2
[ C

.

n=1
e−t(1 − e−t)n − 1 ||Q+

n (F) − MF ||B2
, t \ 0.

Also we have

||Q+
n (F) − MF ||B2

[ ||Q+
n (F)||B2

+||MF ||B2
=2(1+|v0 |2+3T).

Let g > 0 satisfy

gb
120+b

=1 − g, i.e., g=
120+b

120+2b
.
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For any t \ 0, choose an integer N such that egt [ N [ 2egt. Then, by
Theorem 1, we have

||ft − MF ||B2
[ C

N

n=1
e−t(1 − e−t)n − 1 ||Q+

n (F) − MF ||B2

+ C
.

n=N+1
e−t(1 − e−t)n − 1 ||Q+

n (F) − MF ||B2

[ 2(1+|v0 |2+3T) Ne−t+(1 − e−t)N FB, F(N−a)

[ 12(1+|v0 |)2 (1+T) e−(1 − g) t+FB, F(e−gat)

where a=60b/(120+b). Since ga/60=gb/(120+b)=1− g, the properties
of WB( · ) implies that

e−(1 − g) t=e−(ga/60) t [ 3pWg
B((e−gat+JF(e−gat))1/60).

By definition of FB, F(r) given in Theorem 1 and recalling that >R3 |v − v0 | dF(v)
[ (3T)1/2 we get

||ft − MF ||B2
[ 12(1+|v0 |)2 (1+T) e−(1 − g) t+FB, F(e−gat)

[
(120+CB)(1+|v0 |)3 (1+T)2

(>R3 |v − v0 | dF(v))1/30 Wg
B((e−gat+JF(e−gat))1/60)

:=F̃B, F(e−gat).

Here F̃B, F(r) is a modification of FB, F(r) by only replacing CB with 120+CB.
Since ga= 120+b

120+2b · 60b
120+b=

30b
60+b=b, this proves the estimate (1.24). L

Proof of Corollary to Theorem 2. The Hölder condition (1.25) is
equivalent to WB(r) [ CBra with 0 < a=aB [ 1. Let b1=30b/(60+b) be
the constant in Theorem 2. Using the inequality y |log y| [ 7y6/7 for
0 [ y [ 1 we have Wg

B(r) [ 7(WB(r))6/7 [ 7(CB)6/7r6a/7, and so by Theorem 2
and the definition of FB, F(r)

||ft − MF ||B2
[ FB, F(e−b1t) [ CB, F[(e−b1t+JF(e−b1t))1/60]6a/7

[ CB, F(e−(b1a/70) t+(JF(e−b1t))a/70), t \ 0.

Here CB, F denotes the finite constant that depend only on the kernel B( · )
and the initial datum F. Furthermore by assumption on F we have for any
t \ 0

JF(e−b1t) [ e−db1t F
R3

|v|2+d dF(v)=Ce−db1t.
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Let b=min{b1a/70, db1a/70}. Then

e−(b1a/70) t+(JF(e−b1t))a/70 [ Ce−bt.

This proves the corollary. L

5. LOWER BOUNDS FOR THE CONVERGENCE RATE

5.1. Construction of Initial Data

This section is devoted to the lower bounds on the convergence rate
given in Theorem 4. Our starting point is the construction of solutions
tending to equilibrium at an arbitrarily slow exponential rate due to A. V.
Bobylev. (7) Bobylev’s technique is based on the use of the Fourier trans-
form. This method readily produces solutions in L1(R3) that decay at an
arbitraily slow exponential rate:

||ft − MF ||L1 \ ||f̂t − MF
5 ||L. \ ce−dt, t \ 0 (5.1)

where c > 0 is a constant and d > 0 can be arbitrarily small.
A key point in the proof is to show that this can be done in such a

manner that the solutions are non-negative, and therefore physically rele-
vant. The initial data Bobylev used was built out of an eigenfunction of the
linearized Boltzmann equation in the isotropic sector. As long as one uses a
single eigenfunction, exponentially decaying lower bounds are the best that
one can hope to obtain.

Here, we build our initial data out of linear combinations of such
eigenfunctions to obtain slower convergence. To motivate this, recall a
theorem of S. Bernstein (see ref. 15) about completely monotone functions:
A function A(t) is completey monotone on [0, .) if and only if there is a
probability measure n on [0, .) such that

A(t)=F
.

0
e−st dn(s), t \ 0; n({0})=0. (5.2)

Note that here the condition n({0})=0 is equivalent to the condition
limt Q . A(t)=0. Then, since there are completely monotone functions that
decay very slowly (see Lemma 5.4 below), Bernstein’s theorem suggests that
we seek appropriate averages of Bobylev’s initial data.

Again, the challenge is to show that one can do this in such a way that
one produces a non-negative, physical solution. Our strategy for this is
rather different for Bobylev’s, which worked well for single eigenfunctions.
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We prove a comparison property between solutions of the linearized equa-
tion and the full non-linear equation which reduces the positivity question
to a simple question about the linearized equation. The investigation is
carried out in three subsections, with this one focused on constructing the
initial data.

Let A( · ) be a completely monotone function on [0, .). We first find a
positive Borel measure m on [0, 1] such that for some constants 1/2 [

a < . and c > 0

cA(t/a) [ F
1

0
e−st dm(s) [ A(t/a), -t \ 0. (5.3)

Let n be the probability measure on [0, .) determined by A( · ) through
(5.2). Choose a constant 1/2 [ a < . such that n([0, a]) > 0. By the Riesz
representation theorem, there is a unique positive Borel measure m on
[0, 1], such that

F
1

0
f(s) dm(s)=F

a

0
f 1 s

a
2 dn(s), -f ¥ C([0, 1]).

Choose f(s)=e−st for each fixed t \ 0. This gives

A(t/a) \ F
a

0
e−(s/a) t dn(s)=F

1

0
e−st dm(s), -t \ 0.

On the other hand, by the inequality

F
(a, .)

e−(s/a) t dn(s) [ e−tn((a, .)) [
n((a, .))
n([0, a])

F
a

0
e−(s/a) t dn(s)

we have

A(t/a) [ 11+
n((a, .))
n([0, a])

2 F
a

0
e−(s/a) t dn(s)=

1
n([0, a])

F
1

0
e−st dm(s).

This proves inequality (5.3) with the constant c=n([0, a]) > 0.
Note that the inequality (5.3) and condition limt Q . A(t)=0 imply

that m({0})=0 which is essential for constructing positive initial data in
L1

2(R3) with the given moment condition.
Now consider initial data of the following type:

F(v)=M(v)+h0h0(v), v ¥ R3
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where M(v)=(2p)−3/2 e−|v|2/2 is the Maxwellian in P2(R3; 0, 1),

h0(v)=(2p)−3 F
R3

e−|t|2/2U0(t) e iOt, vP dt,

U0(t)=F
1

0
|t|2+s dm(s), t ¥ R3,

and h0 > 0 is a constant.

Lemma 5.1. The function F constructed above has the following
properties:

(1) F is an isotropic function: F(v)=F̄(|v|), and F ¥ L1
2(R3) 5

H.(R3), and F is analytic on R3.
(2)

F̂(t)=e−|t|2/2(1+h0U0(t)), F
R3

(1, v, |v|2) F(v) dv=(1, 0, 3) (5.4)

and for small h0 > 0, F is strictly positive on R3.
(3) There are constants 0 < c :=c(m, h0), C :=C(m, h0) < . which

depend only on m and h0, such that

c F
1

0
e−st dm(s) [ JF(e−t) — F

|v| > et
|v|2 F(v) dv [ C F

1

0
e−st dm(s) t \ 0.

(5.5)

Proof. First of all we have the following estimate

0 [ U0(t) [ F
1

0
(1+|t|3) dm(s)=C(m)(1+|t|3), t ¥ R3, (5.6)

here and below, the constants 0 < c(f,...), C=C(f,...) < . depend only on
their arguments f,..., and 0 < c0, C0 < . denote absolute constants. This
implies first that the function h0 and therefore F are well-defined on R3 and
belong to L.(R3) 5 C(R3). Now we prove a representation of h0(v):

h0(v)=|v|−5 (2p)−3/2 F
1

0

1
w(s)

F
|v|2

0
(|v|2 −r)−s/2 r (3+s)/2P(r) e−r/2 dr dm(s), v ] 0

(5.7)

where

w(s)=F
.

0
r−s/2e−r/2 dr, P(r)=15 − 10r+r2. (5.8)
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Note that this representation implies first that h0 and therefore F are iso-
tropic functions.

To prove (5.7), we first write |t|2+s as follows using change of variable
for integral:

|t|2+s=|t|4 1
w(s)

F
.

0
r−s/2e−r |t|2/2 dr, t ¥ R3, 0 [ s [ 1.

(Recalling the convention 0 · .=0, the above equality holds also for
t=0.) Then by definition of h0(v) and U0(t), and using Fubini theorem,
we have

h0(v)=(2p)−3/2 F
1

0

1
w(s)

F
.

0
r−s/2(1+r)−7/2 H(v/`1+r ) dr dm(s)

where

H(v)=(2p)−3/2 F
R3

|t|4 e−|t|2/2e iOt, vP dt.

Since e−|v|2/2=(2p)−3/2 >R3 e−|t|2/2e iOt, vP dt,

H(v)=D2(e−|v|2/2)=P(|v|2) e−|v|2/2

where D is the Laplacian in v ¥ R3 and P(r) is the polynomial in (5.8).
From this and changing variables in the integral we obtain

h0(v)=(2p)−3/2 F
1

0

1
w(s)

F
.

0
r−s/2(1+r)−7/2 P(|v|2/(1+r)) e−1

2 |v|2/(1+r) dr dm(s)

=|v|−5 (2p)−3/2 F
1

0

1
w(s)

F
|v|2

0
(|v|2 − r)−s/2 r (3+s)/2P(r) e−r/2 dr dm(s).

This proves (5.7). Next we prove that

|h0(v)| [ C0 F
1

0
s |v|−5 − s dm(s)+C(m) |v|−7, |v| \ 2. (5.9)

To do this we consider a decomposition for |v| \ 2:

F
|v|2

0
(|v|2 − r)−s/2 r (3+s)/2P(r) e−r/2 dr=F

|v|

0
+F

|v|2

|v|
. (5.10)
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For the first term, we compute using the definition of P(r) and several
integrations by parts that for 0 [ s [ 1 and |v| \ 2

F
|v|

0
(|v|2 − r)−s/2 r (3+s)/2P(r) e−r/2 dr

=(2s+s2) F
|v|

0
(|v|2 − r)−s/2 r (3+s)/2e−r/2 dr

+((6 − 2s) |v| (5+s)/2 − 2 |v| (7+s)/2) e−|v|/2(|v|2 − |v|)−s/2

+F
|v|

0
((s2 − 3s) r (5+s)/2+sr(7+s)/2)(|v|2 − r)−(s/2) − 1 e−r/2 dr, |v| \ 2.

(5.11)

The computation is lengthly, but what is crucial is the factor (2s+s2) in the
first term after the equal sign. The fact that this integral is multiplied by
something that is O(s) is what we need later on.

Next, by |v| \ 2 and 0 [ s [ 1, we have

(|v|2 − r)−s/2 [ 2 |v|−s, (|v|2 − r)−(s/2) − 1 [ 4 |v|−2 for 0 [ r [ |v|.

This together with (5.11) gives

:F |v|

0
(|v|2 − r)−s/2 r (3+s)/2P(r) e−r/2 dr : [ C0s |v|−s+C0 |v|−2, |v| \ 2

where 0 < C0 < . is an absolute constant.
For the second term in the right-hand side of (5.10), we have for

0 [ s [ 1 and |v| \ 2,

: F
|v|2

|v|
(|v|2 − r)−s/2 r (3+s)/2P(r) e−r/2 dr : [ C0 |v|−2.

Thus, for all |v| \ 2

: F |v|2

0
(|v|2 − r)−s/2 r (3+s)/2P(r) e−r/2 dr : [ C0s |v|−s+C0 |v|−2,

from which (5.9) follows, using the fact that on 0 [ s [ 1, 0 < c0 [

w(s) [ C0.
Next we prove that there is a number 9 < R0(m) < . such that

h0(v) \ c0 F
1

0
s |v|−5 − s dm(s), |v| \ R0(m). (5.12)
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Since the polynomial P(r) > 0 for r \ 9, we have by (5.7), (5.10), and (5.11)
that for all |v| \ 9

h0(v) \ |v|−5 (2p)−3/2 F
1

0

1
w(s)

F
|v|

0
(|v|2 − r)−s/2 r (3+s)/2P(r) e−r/2 dr dm(s)

and

F
|v|

0
(|v|2 − r)−s/2 r (3+s)/2P(r) e−r/2 dr \ c0s |v|−s − C0 |v|−2.

Therefore

h0(v) \ |v|−7 1c0 F
1

0
s |v|2 − s dm(s) − C(m)2 .

By m({0})=0 and m([0, 1])=n([0, a]) > 0 we have >1
0 s dm(s) > 0 which

implies for some finite number R0(m) > 9

c0 F
1

0
s |v|2 − s dm(s) \ c0 |v| F

1

0
s dm(s) \ 2C(m), -|v| \ R0(m).

This gives (5.12).
Now we prove that F ¥ L1

2(R3). It suffices to prove that h0 ¥ L1
2(R3).

By (5.9) we have

F
|v| \ 2

|v|2 |h0(v)| dv [ C0 F
1

0
2−s dm(s)+C(m) < ..

Since h0 ¥ L.(R3), this implies that h0 and therefore F belong to L1
2(R3).

Next we prove that for small h0 > 0, F is strictly positive on R3. Let
R0(m) be the constant in (5.12) and let h0 > 0 be small such that

(2p)−3/2 e−(R0(m))2/2 − h0 ||h0 ||L. > 0.

Then for any v ¥ R3, if |v| [ R0(m), then

F(v)=M(v)+h0h0(v) \ (2p)−3/2 e−(R0(m))2/2 − h0 ||h0 ||L. > 0;

if |v| \ R0(m), then by (5.12) we see that F(v) \ h0h0(v) > 0. This proves the
strict positivity of F.

Now we prove that the function F is analytic on R3. Equivalently we
prove that h0 is analytic on R3. Let a=(a1, a2, a3) be muli-indices with ai
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nonnegative integers, and let Da=“
|a|/“ta1

1 “ta2
2 “ta3

3 be a partial differen-
tial operator with order |a|=a1+a2+a3. Then from the above estimate
and applying the theorem of taking derivative under integral sign we have
with ta=ta1

1 ta2
2 ta3

3 ,

Dah0(v)=(2p)−3 i |a| F
R3

e−|t|2/2 1F
1

0
|t|2+s dm(s)2 tae iOt, vP dt.

This implies that for any v, z ¥ R3 and n ¥ N

C
|a|=n

: Dah0(v)
a!

za: [ C(m) F
R3

e−|t|2/2(1+|t|3)
(`3 |z| |t|)n

n!
dt.

Since

C
.

n=0
F

R3
e−|t|2/2(1+|t|3)

(`3 |z| |t|)n

n!
dt=F

R3
e−|t|2/2(1+|t|3) e `3 |z| |t| dt < .

for all z ¥ R3, this implies that the function h0 is analytic on R3.
Next we prove (5.4) and the regularity F ¥ H.(R3). It is obvious that

the first equality in (5.4) and the bound (5.6) imply F ¥ H.(R3). To prove
(5.4), we recall that F(v)=M(v)+h0h0(v), and thus it is equivalent to
prove that

h0
5 (t)=e−|t|2/2U0(t) and F

R3
(1, v, |v|2) h0(v) dv=(0, 0, 0). (5.13)

The first equality is obvious because the functions e−|t|2/2U0(t) and h0(v) are
both even, continuous, bounded and integrable on R3. To prove the second
equality in (5.13), we note that h0 ¥ L1

2(R3) implies that its Fourier trans-
form h0
5 ¥ C2(R3), so we need only to prove that

h0
5 (t)=o(|t|2) (|t| Q 0).

But this is easy: By definition of U0(t) and m({0})=0 we have

h0
5 (t)
|t|2 =e−|t|2/2 F

(0, 1]
|t| s dm(s) Q 0 (|t| Q 0).

Finally, we prove the two-sides estimates (5.5). Equivalently we prove
that

c F
1

0
R−s dm(s) [ JF

1 1
R
2 — F

|v| > R
|v|2 F(v) dv [ C F

1

0
R−s dm(s) -R \ 1.

(5.14)
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where the constants 0 < c=c(m, h0), C=C(m, h0) < . depend only on m

and h0.
To obtain the lower bound in (5.14), we have for any R \ 1, if

R \ R0(m), then by (5.12) and m({0})=0

F
|v| > R

|v|2 F(v) dv \ F
|v| > R

|v|2 1c0h0 F
(0, 1]

s |v|−5 − s dm(s)2 dv

=4pc0h0 F
1

0
R−s dm(s). (5.15)

In particular, for R=R0(m) we have

F
|v| > R0(m)

|v|2 F(v) dv \ 4pc0h0 F
1

0
(R0(m))−s dm(s).

This implies that if 1 [ R [ R0(m), then, since F \ 0,

F
|v| > R

|v|2 F(v) dv \ F
|v| > R0(m)

|v|2 F(v) dv \ 4pc0h0 F
1

0
(R0(m))−s dm(s).

Since 1 [ R [ R0(m) and 0 [ s [ 1 we have

(R0(m))−s=R−s 1 R
R0(m)

2 s

\ R−s 1 1
R0(m)

2 s

\ R−s 1
R0(m)

=(R0(m))−1 R−s.

Thus if 1 [ R [ R0(m), then

F
|v| > R

|v|2 F(v) dv \ F
|v| > R0(m)

|v|2 F(v) dv \ 4pc0h0 F
1

0
(R0(m))−s dm(s)

\ 4pc0h0(R0(m))−1 F
1

0
R−s dm(s).

To obtain the upper bound in (5.14), use the estimate (5.9) and obtain
that for R \ 2

F
|v| > R

|v|2 F(v) dv=F
|v| > R

M(v) dv+h0 F
|v| > R

|v|2 h0(v) dv

[ C(m) R−1+h0C0 F
(0, 1]

s 1F
|v| > R

|v|−3 − s dv2 dm(s)

[ 1 C(m)
m([0, 1])

+h0C0
2 F

1

0
R−s dm(s)
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andfor1 [ R [ 2, >|v| > R |v|2 F(v) dv [ 3 [ 3(>1
0 2−s dm(s))−1 >1

0 R−s dm(s).This
proves the estimate (5.14) and therefore (5.5) holds true. L

5.2. Linear and Nonlinear Solutions: A Comparison Property

Let U0, h0 and F=M+h0h0 be the functions constructed in the Part 1
with a small constant h0 > 0. Since F ¥ L1

2(R3) is positive, there is a unique
solution ft \ 0 of the Boltzmann equation (1.1) in C1([0, .); L1

2(R3)) with
the initial datum ft |t=0=F and ft conserves the mass, momentum and
energy, i.e., >R3 (1, v, |v|2) ft(v) dv=(1, 0, 3) for all t \ 0. Note that since
the initial datum F(v)=F̄(|v|) is isotropic, it is easily seen (using the
uniqueness) that the solution ft(v) and therefore its Fourier transform
f̂t(t) are also isotropic, i.e.,

ft(v)=f̄(|v|, t), f̂t(t)=fg(|t|, t), v, t ¥ R3, t \ 0.

Let

U(t, t)=e |t|2/2f̂t(t) − 1=e |t|2/2fg(|t|, t) − 1 t ¥ R3, t \ 0 (5.16)

or equivalently

f̂t(t)=fg(|t|, t)=e−|t|2/2(1+U(t, t)), t ¥ R3, t \ 0.

It is easily checked that U(t, t) is real and continuous on R3 × [0, .) and
satisfies the following Boltzmann equation of the Fourier transform
version:

“

“t
U(t, t)=F

p

0
B̄(h)[ − U(t, t)+U(cos(h/2) t, t)+U(sin(h/2) t, t)] dh

+F
p

0
B̄(h)[U(cos(h/2) t, t) U(sin(h/2) t, t)] dh (5.17)

for t ¥ R3, t \ 0 with the initial datum U|t=0=h0U0. Here B̄(h)=
2pB(cos(h)) sin(h).

Now we turn to the linear equation: Let Y0 ¥ C(R3) and Y0 \ 0 on R3.
Let Y(t, t) be a solution of the following linear equation (i.e., neglect the
nonlinear term in Eq. (5.17))

“

“t
Y(t, t)=F

p

0
B̄(h)[ − Y(t, t)+Y(cos(h/2) t, t)+Y(sin(h/2) t, t)] dh

(5.18)
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for all (t, t) ¥ R3 × [0, .), and satisfy the initial condition Y|t=0=Y0.
Existence and uniqueness of the continuous solution Y is easily proven and
Y(t, · ) ¥ C1[0, .) for each fixed t ¥ R3. Moreover, Y is nonnegative on
R3 × [0, .). Here we only prove the nonnegativeness. It suffices to
show that for any R > 0, Y is nonnegative on the set {(t, t) ¥ R3 ×
[0, .) | |t| [ R}. Note that the function y W (−y)+ :=max{ − y, 0} is a
Lipschitz-function on R. By Y0 \ 0, we have (−Y0(t))+=0 and

(−Y(t, t))+=(−Y0(t))++F
t

0

1−
“

“y
Y(t, y)2 1{Y(t, y) < 0} dy

=F
t

0
F

p

0
B̄(h)((Y(t, y) 1{Y(t, y) < 0} −Y(cos(h/2) t, y) 1{Y(t, y) < 0}

−Y(sin(h/2) t, y) 1{Y(t, y) < 0}) dh dy

[ F
t

0
F

p

0
B̄(h)((−Y(cos(h/2) t, y))++(−Y((sin(h/2) t, y))+) dh dy

[ 2 F
t

0
hR(y) dy, |t| [ R, t ¥ [0, .).

Here, hR(t)=sup|t| [ R(−Y(t, t))+ . Therefore, we obtain

hR(t) [ 2 F
t

0
hR(y) dy, t ¥ [0, .).

Since Y(t, t) is continuous on R3 × [0, .), the function hR( · ) is locally
bounded on [0, .). Thus the Gronwall lemma can be used which implies
that hR(t) — 0 on [0, .). This means that Y(t, t) \ 0 on {(t, t) ¥ R3 ×
[0, .) | |t| [ R}. Since R > 0 is arbitrary, it follows that Y(t, t) \ 0 for all
(t, t) ¥ R3 × [0, .).

Using the same argument (Gronwall lemma, local boundedness, etc.),
it can be proven that the continuous solution of the non-linear Eq. (5.17) is
also unique and is nonnegative provided that its initial datum is continuous
and nonnegative. Generally, we have the following comparison property:

Lemma 5.2. Let V0(t), Y0(t) be continuous on R3 and satisfy

V0(t) \ Y0(t) \ 0, -t ¥ R3.

Let V(t, t), Y(t, t) be continuous solutions of the non-linear equation
(5.17) and the linear equation (5.18) on R3 × [0, .) respectively, and satisfy
V|t=0=V0, Y|t=0=Y0. Then

V(t, t) \ Y(t, t) \ 0 -(t, t) ¥ R3 × [0, .).
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Proof. We have proved that the solution Y(t, t) is nonnegative on
R3 × [0, .) since Y0 is nonnegative. Therefore, we need only prove that
V(t, t) \ Y(t, t). Let

W(t, t)=V(t, t) − Y(t, t), W0(t)=V0(t) − Y0(t).

For any 0 < R < . and any 0 < T < ., let

HR(t)=sup
|t| [ R

(−W(t, t))+, CR, T= sup
|t| [ R, 0 [ t [ T

max{|W(t, t)|, Y(t, t)}.

Then CR, T < .. In our derivation below we will use the following simple
but useful inequalities: For any w1, w2, w ¥ R, y \ 0 and 0 [ q [ 1, we have

− w1w2q [ (−w1)+ |w2 |+(−w2)+ |w1 |, − wyq [ (−w)+ y. (5.19)

By (5.17), (5.18), and using the property (5.19) and notice that W0 \ 0,
Y \ 0 we have for any (t, t) ¥ R3 × [0, .) satisfying |t| [ R, t [ T

(−W(t, t))+

=(−W0(t))++F
t

0

1 −
“

“y
W(t, y)2 1{W(t, y) < 0} dy

=F
t

0

3 F
p

0
B̄(h) [W(t, y) 1{W(t, y) < 0} − W(cos(h/2) t, y) 1{W(t, y) < 0}

− W(sin(h/2) t, y) 1{W(t, y) < 0}

− W(cos(h/2) t, y) W(sin(h/2) t, y) 1{W(t, y) < 0}

− W(cos(h/2) t, y) Y(sin(h/2) t, y) 1{W(t, y) < 0}

− Y(cos(h/2) t, y) W(sin(h/2) t, y) 1{W(t, y) < 0}

− Y(cos(h/2) t, y) Y(sin(h/2) t, y) 1{W(t, y) < 0}] dh4 dy

[ F
t

0

3 F
p

0
B̄(h)[(−W(cos(h/2) t, y))++(−W(sin(h/2) t, y))+

+(−W(cos(h/2) t, y))+ |W(sin(h/2) t, y)|
+(−W(sin(h/2) t, y))+ |W(cos(h/2) t, y)|
+(−W(cos(h/2) t, y))+ Y(sin(h/2) t, y)

+(−W(sin(h/2) t, y))+ Y(cos(h/2) t, y)] dh4 dy

[ F
t

0

3 F
p

0
B̄(h)[2HR(y)+4CR, THR(y)] dh4 dy=(2+4CR, T) F

t

0
HR(y) dy.
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Thus by the definition of HR(t), we obtain

HR(t) [ (2+4CR, T) F
t

0
HR(y) dy -t ¥ [0, T].

By Gronwall’s lemma, this implies that HR(t) — 0 on [0, T]. Equivalently,
W(t, t) \ 0- |t| [ R, -t ¥ [0, T]. Letting R Q ., T Q . gives the global
comparison:

V(t, t) − Y(t, t)=W(t, t) \ 0 -(t, t) ¥ R3 × [0, .). L

Remark. As one can see, in this comparison property, the nonnega-
tivity of the initial data and the signs in the integrands in (5.17) and (5.18),
are essential. These conditions come from the physical nature of the
Boltzmann equation, and in particular, its irreversibility.

5.3. Lower Bounds and the Scale-Equivalence

Now we will use the comparison property to estimate the lower
bounds of the rate of convergence to equilibrium. Let m be the positive
Borel measure on [0, 1] obtained above. For any s \ 0, let

l(s)=F
p

0
B̄(h)(1 − (cos(h/2))2+s − (sin(h/2))2+s) dh, (5.20)

Y(t, t)=h0 F
1

0
|t|2+se−l(s) t dm(s), (t, t) ¥ R3 × [0, .). (5.21)

Here and below the constant h0=h0(m) > 0 is fixed and such that the
initial datum F(v) is strictly positive on R3. Let ft(v) be the unique solution
of the Boltzmann equation in C1([0, .); L1

2(R3)) with ft |t=0=F, and let
M=MF be the corresponding Maxwellian.

Lemma 5.3. Using the above notation,

f̂t(t) − M̂(t) \ e−|t|2/2Y(t, t) -t ¥ R3, -t \ 0, (5.22)

− l(s) \ − s/2, -s ¥ [0, 1] (5.23)

and there is a constant c > 0 such that

[f̂t(t) − M̂(t)]||t|=1 \ cA(t), -t \ 0. (5.24)
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Proof. As mentioned above, the function U(t, t) defined in (5.16) is
a continuous solution of the nonlinear Eq. (5.17) with the initial datum
U|t=0=h0U0. By definition of l(s), it is easily checked that the function
Y(t, t) given in (5.21) is a continuous solution of the linear Eq. (5.18) with
Y|t=0=h0U0. Since U|t=0=Y|t=0, it follows from the comparison property
that U(t, t) \ Y(t, t) for all (t, t) ¥ R3 × [0, .). Since f̂t(t) − M̂(t)=
e−|t|2/2U(t, t), this proves (5.22). Next we estimate l(s). Since s \ 0, we have
by convexity

(cos(h/2))2+s+(sin(h/2))2+s \ 2−s/2 \ 1 − s/2.

By (5.20), this gives (5.23):

− l(s)=F
p

0
B̄(h)( − 1+(cos(h))2+s+(sin(h/2))2+s) dh \ − s/2.

Now for |t|=1, Y(t, t)=h0 >1
0 e−l(s) t dm(s) \ h0 >1

0 e−st/2 dm(s) for all t \ 0.
This estimate together with (5.22), (5.3) and 1/2 [ a gives (5.24): For all
t \ 0

[f̂t(t) − M̂(t)]||t|=1 \ e−1/2Y(t, t)||t|=1 \ e−1/2h0 F
1

0
e−st/2 dm(s)

\ cA(t/(2a)) \ cA(t). L

Proof of Theorem 4. From (5.24) we obtain the lower bounds
(1.29) and (1.30) in the Theorem 4:

||ft − M||L1 \ ||f̂t − M̂||L. \ [f̂t(t) − M̂(t)]||t|=1 \ cA(t), t \ 0,

||ft − M||L1
2

\ |||ft − M|||0 \ [f̂t(t) − M̂(t)]||t|=1 \ cA(t), t \ 0.

Here we have used the inequality (2.11) because >R3(1, v, |v|2) ft(v) dv=
(1, 0, 3) for all t \ 0.

Next we prove that if the kernel B( · ) satisfies the Hölder condition
(1.25), then the t-functions ||ft − M||L1

2
, ||ft − M||L1, FB, F(e−t), JF(e−t), A(t),

||f̂t − M̂||L. and |||ft − M|||0 are scale-equivalent each other. We will prove
this by showing that the following relation of a closed chain holds:

|||ft − M|||0 Q ||ft − M||L1
2

Q FB, F(e−t) Q JF(e−t) Q A(t)

Q ||f̂t − M̂||L. Q ||ft − M||L1 Q A(t) Q |||ft − M|||0 on t ¥ [0, .).
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The first and the second ‘‘ Q ’’ have been proved by the lower bounds
(1.30) and by Theorem 2 respectively. And because of (1.30) and (1.29), the
last ‘‘ Q ’’ is obvious and cA(t) [ ||f̂t − M̂||L. [ ||ft − M||L1 [ ||ft − M||L1

2
.

Thus to complete the proof, we need only to prove that FB, F(e−t) Q

JF(e−t) Q A(t) on t ¥ [0, .).
By definition of FB, F and the Hölder condition WB(r) [ CBra we have

FB, F(e−t)=CWg
B((e−t+JF(e−t))1/60)

[ C[WB((e−t+JF(e−t))1/60)]6/7 [ C(e−t+JF(e−t))a/70.

On the other hand, using (5.5) we have

JF(e−t) \ c F
1

0
e−st dm(s) \ cm([0, 1]) e−t, t \ 0.

Since 0 < cm([0, 1]) < ., this implies that e−t [ CJF(e−t) and so

FB, F(e−t) [ C(JF(e−t))a/70, t \ 0.

Thus FB, F(e−t) Q JF(e−t) on t ¥ [0, .). Again, using (5.5) and (5.3) we
have

JF(e−t) [ C F
1

0
e−st dm(s) [ CA(t/a), t \ 0.

This proves JF(e−t) Q A(t) on t ¥ [0, .). L

We conclude this section with the following lemma, which has been
mentioned in the introduction.

Lemma 5.4. If A0(t) is any completely monotone function on
[0, .), then so is A1(t)=A0(log(1+t)).

Proof. It is obvious that A1 is positive, A1 ¥ C.(0, .) 5 C[0, .),

A1(0)=A0(0)=1 and lim
t Q .

A1(t)= lim
x Q .

A0(x)=0.

Thus by definition of completely monotone, we need only to prove that

(−1)n dn

dtn A1(t) \ 0 -n=1, 2,..., t > 0.
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For n=1, 2 we have

−
d
dt

A1(t)=−1 d
dx

A0
2 (log(1+t)) (1+t)−1 \ 0, t > 0

d2

dt2 A1(t)=(1+t)−2 31 d2

dx2 A0
2 (log(1+t))−1 d

dx
A0
2 (log(1+t))4\ 0, t > 0.

Suppose that for some integer n \ 2

(−1)n dn

dtn A1(t)=(1+t)−n C
n

k=1
a (n)

k (−1)k 1 dk

dxk A0
2 (log(1+t)), t > 0

(5.25)

with a (n)
k > 0, k=1,..., n. Then we compute

(−1)n+1 dn+1

dtn+1 A1(t)

=(1+t)−n − 1 C
n+1

k=1
a (n+1)

k (−1)k 1 dk

dxk A0
2 (log(1+t)), t > 0

where

a (n+1)
1 =na(n)

1 > 0, a (n+1)
k =na(n)

k +a(n)
k − 1 > 0, k=2, 3,..., n; a (n+1)

n+1 =a(n)
n > 0.

This proves that the equality (5.25) with all a (n)
k > 0 holds true for all

n=1, 2, 3,... . Thus A1(t) is completely monotone on [0, .). L

6. GLOBAL STABILITY

In this section we prove Theorem 3 and its Corollary. Before proving
the theorem, let us explain why assume that F is not a Dirac measure.
Suppose that F ¥ B2(R3) is a Dirac measure. Without loss generality we
assume that F ¥ P2(R3) and F concentrates on 0 ¥ R3, i.e., >R3 f(v) dF(v)=
f(0) -f ¥ C(R3). Then we have

-G ¥ P2(R3) satisfying G ] F 2 lim
t Q .

||ft − gt ||B2
\ lim

t Q .

||ft − gt ||B0
=2.

(6.1)

Here ft and gt are solutions of the Boltzmann equation (1.19) with
ft |t=0=F and gt |t=0=G. Note that since F is a Dirac measure, it is an
equilibrium, i.e., ft — F.
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(6.1) shows that even if the initial distance ||F − G||B0
can be small, for

instance G=(1 − e) F+eM with 0 < e ° 1 , the distance ||ft − gt ||B0
of

corresponding solutions can not be small uniformly unless G=F.
The proof of (6.1) is as follows: We first prove the following property:

H ¥ P2(R3) and H({0})=0 2 ||F − H||B0
=2. (6.2)

Since ||F − H||B0
[ 2, we need only to prove that ||F − H||B2

\ 2. Con-
sider the following test functions fN(v): For each integer N \ 2, define a
continuous function f̄N(r) on [0, .) by f̄N(r)=1 for 0 [ r [ 1/N;
f̄N(r)=−1 for 2/N [ r [ N; f̄N(r)=0 for r \ 2N, and |f̄N(r)| [ 1 for all
r \ 0. Let fN(v)=f̄N(|v|). Then we have, by ||fN ||L.=1 and H({0})=0

||F − H||B0
\ : F

R3
fN(v) dF(v) − F

R3
fN(v) dH(v):

\ 2 − 2 F
0 < |v| < 2/N

dH(v) −
2

N2 F
R3

|v|2 dH(v) Q 2 (N Q .).

Now we prove (6.1). If G is not a Dirac measure, then TG=
1
3 >R3 |v − uG |2 dG(v) > 0 where uG is the mean velocity. By Theorem 2 we
have limt Q . ||gt − MG ||B0

=0. Thus, recalling that ft — F is an equilibrium
and using the property (6.2) we obtain

lim
t Q .

||ft − gt ||B2
\ lim

t Q .

||ft − gt ||B0
=||F − MG ||B0

=2.

If G is a Dirac measure, i.e., G concentrates on uG, then uG ] 0 since G ] F.
This implies that G({0})=0. Since gt — G is an equilibrium, it follows from
(6.2) that

||ft − gt ||B2
\ ||ft − gt ||B0

=||F − G||B0
=2, t \ 0.

This proves (6.1).

Proof of Theorem 3. Let F be given in the theorem and let
0 [ G ¥ B2(R3). Let ft, gt be distributional solutions of the Boltzmann
equation (1.19) in C([0, .); B2(R3, || · ||B2

)) with ft |t=0=F, gt |t=0=G. For
a technical reason we define

DF=min 31,
1
2

||F||B0
,

3(||F||B0
)3 TF

16(||F||B2
)2 ,

||F||B0

(12+8 |uF |) ||F||B2

F
R3

|v − uF | dF(v)4 .
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By assumption on F, it is obvious that DF > 0. If ||F − G||B2
\ DF, then by

conservation law (1.18)

||ft − gt ||B2
[ ||F||B2

+||G||B2
[ CF ||F − G||B2

.

Here and below the constant CF depends only on |uF |, TF, ||F||B0
, and

>R3 |v − uF | dF(v), i.e.,

CF=C 1 |uF |, TF, ||F||B0
, F

R3
|v − uF | dF(v)2

and where the function (y1, y2, y3, y4) W C(y1, y2, y3, y4) is continuous on
[0, .) × (0, .)3 and has an explicit representation in terms of its argu-
ments yi. Note that ||F||B2

is a function of (|uF |, TF, ||F||B0
). In fact

||F||B2
=(1+|uF |2+3TF) ||F||B0

. Also, if ||F − G||B2
=0, then the uniqueness

implies that the estimate (1.26) in the theorem holds true. Therefore in the
following we assume that

0 < ||F − G||B2
< DF. (6.3)

Note that this implies first that G is not a Dirac measure! (See below).
Before estimating ||ft − gt ||B2

, we collect some elementary estimates
which are easily checked using the condition (6.3) and definition of DF.

1
2

||F||B0
[ ||G||B0

[ ||G||B2
[

3
2

||F||B2
,

> F
||F||B0

−
G

||G||B0

>
B2

[
4 ||F||B2

(||F||B0
)2 ||F − G||B2

, (6.4)

|uF − uG | [
2 ||F||B2

(||F||B0
)2 ||F − G||B2

, |uG | [
3
2

||F||B2

||F||B0

, (6.5)

and

| |uF |2 − |uG |2 | [
4(||F||B2

)2

(||F||B0
)3 ||F − G||B2

which together with

3TF=F
R3

|v|2 dF(v)
||F||B0

− |uF |2
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gives

|TF − TG | [
8(||F||B2

)2

3(||F||B0
)3 ||F − G||B2

. (6.6)

And finally, the condition ||F − G||B2
< DF implies that

0 < 1
2 TF [ TG [ 3

2 TF. (6.7)

Now by distributional version (1.19) of the Boltzmann equation we
have

||ft − gt ||B2
[ ||F − G||B2

+F
t

0
||fy p fy − gy p gy ||B2

dy

+F
t

0
||||F||B0

fy − ||G||B0
gy ||B2

dy.

By the conservation law (1.18) we have

||fy p fy − gy p gy ||B2
[ (||F||B2

+||G||B2
) ||fy − gy ||B2

,

||||F||B0
fy − ||G||B0

gy ||B2
[ (||F||B2

+||G||B2
) ||fy − gy ||B2

.

Since ||G||B2
[ 3

2 ||F||B2
, this gives

||ft − gt ||B2
[ ||F − G||B2

+5 ||F||B2
F

t

0
||fy − gy ||B2

dy, t ¥ [0, .)

so by ft, gt ¥ C([0, .); B2(R3, || · ||B2
)) and Gronwall lemma we obtain

||ft − gt ||B2
[ ||F − G||B2

e5 ||F||B2t, t ¥ [0, .). (6.8)

On the hand, we have

||ft − gt ||B2
[ ||ft − MF ||B2

+||gt − MG ||B2
+||MF − MG ||B2

. (6.9)

Here MF, MG are the corresponding Maxwellians. Since the distribution
t W 1

a f(t
a) is a solution to the Boltzmann equation with initial datum

1
a F ¥ P2(R3) where a=||F||B0

> 0, by Theorem 2 we have

||ft − MF ||B2
=a > 1

a
f 1at

a
2−

1
a

MF
>
B2

[ aFB, 1
a F(e−bat), t ¥ [0, .)

(6.10)
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and similarly with ã=||G||B0

||gt − MG ||B2
[ ãFB, 1

ã G(e−bãt), t ¥ [0, .). (6.11)

Now we estimate ãFB, 1
ã G(e−bãt). By monotonicity of Wg

B(r) and
||G||B0

\ 1
2 ||F||B0

we have, with a=||F||B0
,

ãFB, 1
ã G(e−bãt) [

3
2

||F||B2
FB, 1

ã G(e−1
2 bat)

=
3
2

||F||B2
CB(1+|uG |)3 (1+TG)2 1F

R3
|v − uG |

dG(v)
||G||B0

2−1/30

× Wg
B((e−1

2 bat+JG/||G||B0
(e−1

2 bat))1/60). (6.12)

Further, using the above estimates (6.5), (6.7), (6.4), (6.3), and definition of
DF we compute

(1+|uG |)3 (1+TG)2 [ 11+
3
2

||F||B2

||F||B0

23 11+
3
2

TF
22

;

: F
R3

|v − uG |
dG(v)
||G||B0

− F
R3

|v − uF |
dF(v)
||F||B0

: [ 1
2

F
R3

|v − uF |
dF(v)
||F||B0

.

Thus

F
R3

|v − uG |
dG(v)
||G||B0

\
1
2

F
R3

|v − uF |
dF(v)
||F||B0

,

and so

(1+|uG |)3 (1+TG)2 1F
R3

|v − uG |
dG(v)
||G||B0

2−1/30

[ 21/30 11+
3
2

||F||B2

||F||B0

23 11+
3
2

TF
22

(||F||B0
)1/30 1F

R3
|v − uF | dF(v)2

−1/30

.

(6.13)

Also by definition of the function JF( · ) and using (6.4) we have

JG/||G||B0
(e−1

2 bat)=F
|v| > e

1
2 bat

|v|2 dG(v)
||G||B0

[
4 ||F||B2

||F||2
B0

||F − G||B2
+

1
||F||B0

JF(e−1
2 bat). (6.14)
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Combining (6.11)–(6.14) and using the property Wg
B(lr) [ (1+l) Wg

B(r)
(l, r \ 0) we get

||gt − MG ||B2
[ CBCFWg

B([e−1
2 bat+||F − G||B2

+JF(e−1
2 bat)]1/60). (6.15)

Next we estimate ||MF − MG ||L1
2
. We have

||MF − MG ||L1
2

[ F
R3

(1+|v|2) |||F||B0
− ||G||B0

| (2pTF)−3/2 e−|v − uF|2/(2TF) dv

+||G||B0
F

R3
(1+|v|2) |(2pTF)−3/2 e−|v − uF|2/(2TF) − (2pTG)−3/2 e−|v − uG|2/(2TG)| dv

and for the first term in the right hand side of this inequality we have

F
R3

(1+|v|2) | ||F||B0
− ||G||B0

| (2pTF)−3/2 e−|v − uF|2/(2TF) dv

[ ||F − G||B2
(1+|uF |2+3TF).

To estimate the second term, we use the differential mean value formula to
the function (u, T) W T−3/2e−|v − u|2/(2T), u ¥ R3, T ¥ (0, .). Then we obtain

|T−3/2
F e−|v − uF|2/(2TF) − T−3/2

G e−|v − uG|2/(2TG)|

[ F
1

0
T(h)−5/2 e−|v − u(h)|2/(2T(h)) |v − u(h)| |uF − uG | dh

+1
2 F

1

0
T(h)−7/2 e−|v − u(h)|2/(2T(h))(|v − u(h)|2+3T(h)) |TF − TG | dh

where u(h)=huF+(1 − h) uG and T(h)=hTF+(1 − h) TG. This gives

F
R3

(1+|v|2) |(2pTF)−3/2 e−|v − uF|2/(2TF) − (2pTG)−3/2 e−|v − uG|2/(2TG)| dv

[ C0 F
1

0
(1+T(h)+|u(h)|2)(T(h)−1/2 |uF − uG |+T(h)−1 |TF − TG |) dh.
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Also, from the estimates (6.7) and (6.5) we have

1
2

TF [ min{TF, TG} [ T(h) [ max{TF, TG} [
3
2

TF

|u(h)| [ max{|uF |, |uG |} [
3 ||F||B2

2 ||F||B0

.

Thus

F
R3

(1+|v|2) |(2pTF)−3/2 e−|v − uF|2/(2TF) − (2pTG)−3/2 e−|v − uG|2/(2TG)| dv

[ C0(1+TF+(||F||B2
/||F||B0

)2)(T−1/2
F |uF − uG |+T−1

F |TF − TG |),

and combining the estimates (6.5) and (6.6) for |uF − uG | and |TF − TG |,

||MF − MG ||L1
2

[ CF ||F − G||B2
. (6.16)

Now choose t0 > 0 such that

||F − G||B2
e5 ||F||B2 t0=e−(b ||F||B0/120) t0

i.e. t0=
1

5 ||F||B2
+

b ||F||B0
120

log 1 1
||F − G||B2

2 ( > 0).

Then for all t ¥ [0, t0], we have, using (6.8),

||ft − gt ||B2
[ ||F − G||B2

e5 ||F||B2 t [ ||F − G||B2
e5 ||F||B2

t0

=[||F − G||a
B2

]1/60 [ 3pWg
B([||F − G||a

B2
+JF(||F − G||a

B2
)]1/60)

(6.17)

where a > 0 is the constant given in the theorem. In the following we
assume that t ¥ [t0, .). In this case we use the estimate (6.9). Since
a=||F||B0

and

e−1
2 bat [ e−1

2 b ||F||B0 t0=(e−(b ||F||B0/120) t0)60=||F − G||a
B2

, t \ t0

it follows from (6.10) and using the property of Wg
B(r) again that

||ft − MF ||B2
[ CBCFWg

B([||F − G||a
B2

+JF(||F − G||a
B2

)]1/60),
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and for ||gt − MF ||B2
, notice also that 0 < ||F − G||B2

< 1 and 0 < a <
b ||F||B0

/(10 ||F||B2
) < 1, we have by (6.15) that

||gt − MF ||B2
[ CBCFWg

B([||F − G||a
B2

+JF(||F − G||a
B2

)]1/60).

Together these with (6.9) and (6.16) gives for all t ¥ [t0, .)

||ft − gt ||B2
[ CBCF{||F − G||B2

+Wg
B([||F − G||a

B2
+JF(||F − G||a

B2
)]1/60)}.

Combining this with the same kind estimate (6.17) on [0, t0] gives the
global estimate (1.26) in the theorem, and from the above derivation one
sees that the constant CF for defining the function YB, F( · ) in the theorem
can be written as an explicit and continuous function of (|uF |, TF, ||F||B0

,
>R3 |v − uF | dF(v)). The proof is completed. L

We conclude this paper with the proof of the Corollary to Theorem 3.
The strategy is to approximate general initial data F in the B2 norm by
initial data FR that has finite fourth moments. It is well known that a
bound on fourth moments is propagated uniformly in time. By the global
stability in B2 that has just been proved, the ‘‘energy tails’’ of the solution
starting from F cannot be too much worse than those of the solution start-
ing from FR. Since these are controlled by the fourth moment, we obtain an
estimate on the ‘‘energy tails’’ of the solution starting from F.

Although property of moment propagation for the Maxwellian model
is not new (refs. 14 and 19), we prove a simple explicit bound here that is in
a suitable form for our purposes.

Lemma 6.1. Let 0 [ F ¥ B4(R3), and let ft be the unique solution
of Eq. (1.19) in C([0, .); B2(R3, || · ||B2

)) with ft |t=0=F. Then

F
R3

|v|4 dft(v) [ (2 − e−At) F
R3

|v|4 dF(v), t \ 0 (6.18)

where

A=p F
p

0
B(cos(h)) sin3(h) dh ||F||B0

.

Proof. The global boundedness of the fourth moments is well
knowm. To obtain the explicit estimate (6.18), we use the following repre-
sentation of |vŒ|2 and |v −

g |2:

|vŒ|2=|v|2 cos2(h/2)+|vg |2 sin2(h/2)+`|v|2 |vg |2 −Ov, vgP
2 sin(h) cos(f−a),

|v −

g |2=|v|2 sin2(h/2)+|vg |2 cos2(h/2)−`|v|2 |vg |2 −Ov, vgP
2 sin(h) cos(f−a),
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where h=arc cos(Ov − vg, sP/|v − vg |) (for v=vg we define h=0), f ¥

[0, 2p] and a is independent of f. This representation results from the
following parameterization of the unit sphere:

s=cos(h)
v − vg

|v − vg |
+sin(h)(cos(f) i+sin(f) j).

where {
v − v

*
|v − v

*
| , i, j} is an orthonormal base of R3. Using the above represen-

tation and recalling that 2p >p
0 B(cos(h)) sin(h) dh=1 one computes

F
S2

B 17 v − vg

|v − vg |
, s82 |vŒ|4 ds=11

2
−

a
4
2 (|v|4+|vg |4)+a |v|2 |vg |2 −

a
2
Ov, vgP

2

where

a=2p F
p

0
B(cos(h)) sin3(h) dh.

From this equality and the local boundedness we have (using conser-
vation law (1.18))

d
dt

F
R3

|v|4 dft(v)=F
R3

|v|4 d(ft p ft)(v) − ||F||B0
F

R3
|v|4 dft(v)

=−
a
2

||F||B0
F

R3
|v|4 dft(v)+a 1F

R3
|v|2 dF(v)2

2

−
a
2

FF
R3 × R3

Ov, vgP
2 dft(vg) dft(v).

Neglecting the last term and using the inequality

1F
R3

|v|2 dF(v)2
2

[ ||F||B0
F

R3
|v|4 dF(v)

we obtain

d
dt

F
R3

|v|4 dft(v) [ −
a
2

||F||B0
F

R3
|v|4 dft(v)+a ||F||B0

F
R3

|v|4 dF(v), t \ 0

which gives the estimate (6.18) by Gronwall lemma. L
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Proof of Corollary to Theorem 3. Let R > 0. By >|v| > R |v|2 dft(v)
[ ||F||B2

we can assume that R \ 1. Let FR be a positive measure defined by

dFR(v)=1{|v| [ `R } dF(v)

Then, since R \ 1,

||F − FR ||B2
[ 2JF

1 1

`R
2 .

Now let t W fR, t be the distributional solution of the Boltzmann equation
(1.19) in C([0, .); B2(R3, || · ||B2

) with fR, t |t=0=FR. Then by Theorem 3 we
have

sup
t \ 0

||ft − fR, t ||B2
[ YB, F(||F − FR ||B2

) [ YB, F
12JF

1 1

`R
22 .

On the other hand, applying Lemma 6.1 to the solution fR, t we have

F
R3

|v|4 dfR, t(v) [ 2 F
R3

|v|4 dFR(v)=2 F
|v| [ `R

|v|4 dF(v) [ 2R ||F||B2
.

Therefore for all t \ 0

F
|v| > R

|v|2 dft(v) [ ||ft − fR, t ||B2
+

1
R2 F

R3
|v|4 1{|v| > R} dfR, t(v)

[ YB, F
12JF

1 1

`R
22+2 ||F||B2

1
R

.

This proves the Corollary. L
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